传送门

分析

dp[i][j]为考虑前i个位置,[i-j+1,i]中的颜色互不相同,并且ai-j与这段区间中的某一个位置颜色相同

我们枚举第i+1个位置和[i-j+1,i]中的哪一个颜色相同或者全部不同,进行转移

dp[i][j]=dp[i-1][j-1]*(m-j+1)

dp[i][j]+=dp[i-1][k](k>=j)

发现第二个转移可以前缀和优化一下,显然dp[i+1][j]可以从dp[i][1~j]转移而来

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long n,m,k,dp[][],sum[][];
int main(){
long long i,j,k;
scanf("%lld%lld%lld",&n,&m,&k);
long long now=;
dp[now][]=;
for(i=;i<=n;i++){
now^=;
memset(dp[now],,sizeof(dp[now]));
memset(sum[now],,sizeof(sum[now]));
for(j=;j<=min(i,m-);j++){
dp[now][j]=(dp[now][j]+dp[now^][j-]*(m-j+))%k;
dp[now][j]=(dp[now][j]+sum[now^][j])%k;
}
for(j=n;j>;j--)
sum[now][j]=(sum[now][j+]+dp[now][j])%k;
}
long long ans=;
for(i=;i<m;i++)ans=(ans+dp[now][i])%k;
printf("%lld\n",ans);
return ;
}

noi.ac day3t2 染色的更多相关文章

  1. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...

  2. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  9. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

随机推荐

  1. 《精通.NET企业项目开发》 - 书摘精要

    (P7) 处于任何逻辑层面上的类,对于同一层面上的其他类应该是可重用的:对于在同等范围内其他所有需要该数据的类而言,提供数据的类应该是可以被调用的: (P9) 大多数企业系统都是用平台无关的技术构建的 ...

  2. 2018.7.28 A murder that scandalised Harvard and the world

    A murder that scandalised Harvard and the worldVisiting Boston in 1868, Charles Dickens was asked wh ...

  3. ios 加密解密(包括base64,DES)非原创

    .h文件 #import <Foundation/Foundation.h> /******字符串转base64(包括DES加密)******/ #define __BASE64( tex ...

  4. python发短信功能

    http://www.cnblogs.com/martianShu/p/5847289.html

  5. ipad与iphone的屏幕分辨率

    1.ipad分辨率,iphone 6 iPhone设备      尺寸 分辨率                   点iPhone 3和3s  3.5英寸    (320×480)         3 ...

  6. Operating System-进程/线程内部通信-临界区(Critical Regions)

    上一篇文章讲述了进程之间的竞争条件:多个进程同时进入一个共享区域,导致了数据的不一致,本文主要介绍如何解决这个问题. 一.临界区介绍 解决这个问题就是阻止多个进程同时进入这个共享区域,换句话说,进程之 ...

  7. Angular5学习笔记 - 集成Bootstrap、Jquery、Tether(三)

    一.添加配置 cnpm i bootstrap jquery tether --save 添加后效果 二.配置添加样式和js的引用 打开.angular-cli.json文件,在styles和scri ...

  8. MySQL执行计划的讲解

    最近同事在执行线上执行一条MySQL的查询语句,数据的话在9000条左右,但使用左连接的时候查询速度大概在15秒左右~这速度确实是无法接受的~ 经过简单的修改,变为内连接的话,执行速度不到1秒. 下面 ...

  9. Profile配置

    Profile是Spring用来针对不同环境对不同的配置提供支持的,全局Profile配置使用application-{profile}.properties application.properti ...

  10. scrapy(1)安装

    用的是python3.6 pip install -i https://pypi.douban.com/simple/ scrapy scrapy startproject Article scrap ...