传送门

分析

dp[i][j]为考虑前i个位置,[i-j+1,i]中的颜色互不相同,并且ai-j与这段区间中的某一个位置颜色相同

我们枚举第i+1个位置和[i-j+1,i]中的哪一个颜色相同或者全部不同,进行转移

dp[i][j]=dp[i-1][j-1]*(m-j+1)

dp[i][j]+=dp[i-1][k](k>=j)

发现第二个转移可以前缀和优化一下,显然dp[i+1][j]可以从dp[i][1~j]转移而来

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long n,m,k,dp[][],sum[][];
int main(){
long long i,j,k;
scanf("%lld%lld%lld",&n,&m,&k);
long long now=;
dp[now][]=;
for(i=;i<=n;i++){
now^=;
memset(dp[now],,sizeof(dp[now]));
memset(sum[now],,sizeof(sum[now]));
for(j=;j<=min(i,m-);j++){
dp[now][j]=(dp[now][j]+dp[now^][j-]*(m-j+))%k;
dp[now][j]=(dp[now][j]+sum[now^][j])%k;
}
for(j=n;j>;j--)
sum[now][j]=(sum[now][j+]+dp[now][j])%k;
}
long long ans=;
for(i=;i<m;i++)ans=(ans+dp[now][i])%k;
printf("%lld\n",ans);
return ;
}

noi.ac day3t2 染色的更多相关文章

  1. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...

  2. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  9. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

随机推荐

  1. Hadoop单机模式和伪分布式搭建教程CentOS

    1. 安装JAVA环境 2. Hadoop下载地址: http://archive.apache.org/dist/hadoop/core/ tar -zxvf hadoop-2.6.0.tar.gz ...

  2. 【javascript常见面试题】常见前端面试题及答案

    转自:http://www.cnblogs.com/syfwhu/p/4434132.html 前言 本文是在GitHub上看到一个大牛总结的前端常见面试题,很多问题问的都很好,很经典.很有代表性.上 ...

  3. ORACLE删除用户的有的表的方法

    首先我们查询oracle用户下的所有表 select * from all_tab_comments -- 查询所有用户的表,视图等select * from user_tab_comments    ...

  4. NAT打洞

    NAT(Network Address Translation)是一种广域网的接入技术,将私有地址转换为合法的公共IP地址,可以完美的解决IP地址不足问题,而且还能有效避免来自外部网络的攻击,隐藏并保 ...

  5. BZOJ2120:数颜色(莫队版)

    浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...

  6. Mac上制作Centos7系统U盘安装盘

    Centos7 下载地址: http://101.110.118.47/isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD- ...

  7. touch: cannot touch '/usr/local/tomcat/logs/catalina.out': Permission denied解决方法

    一.报以下错误: ./startup.sh Using CATALINA_BASE: /usr/local/tomcat702 Using CATALINA_HOME: /usr/local/tomc ...

  8. JSF中使用f:ajax标签无刷新页面改变数据

    ajax本是用在前端的一种异步请求数据的操作,广泛用于js中,一般的js框架如jq都有被封装好的方法,用于发起异步请求操作.异步操作可以增强用户体验和操作,越来越多的程序都在使用ajax.JSF的fa ...

  9. uboot - *** Warning - bad CRC, using default environment

    出现这个现象的原因 环境变量存储区没有相应的数据,产生的原因可能是: 1.首次烧写uboot启动,,出现这个提示,执行saveenv 指令保存环境变量即可: 2.nor fash芯片的 基地址出错. ...

  10. 实现MVC

    为什么需要MVC? 1.代码规模越来越大,切分职责是大势所趋: 2.为了复用:很多逻辑是一模一样的: 3.为了后期维护方便:修改一块功能不影响其他功能 MVC只是手段,最终目的是模块化和复用 Cont ...