noi.ac day3t2 染色
分析
dp[i][j]为考虑前i个位置,[i-j+1,i]中的颜色互不相同,并且ai-j与这段区间中的某一个位置颜色相同
我们枚举第i+1个位置和[i-j+1,i]中的哪一个颜色相同或者全部不同,进行转移
dp[i][j]=dp[i-1][j-1]*(m-j+1)
dp[i][j]+=dp[i-1][k](k>=j)
发现第二个转移可以前缀和优化一下,显然dp[i+1][j]可以从dp[i][1~j]转移而来
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long n,m,k,dp[][],sum[][];
int main(){
long long i,j,k;
scanf("%lld%lld%lld",&n,&m,&k);
long long now=;
dp[now][]=;
for(i=;i<=n;i++){
now^=;
memset(dp[now],,sizeof(dp[now]));
memset(sum[now],,sizeof(sum[now]));
for(j=;j<=min(i,m-);j++){
dp[now][j]=(dp[now][j]+dp[now^][j-]*(m-j+))%k;
dp[now][j]=(dp[now][j]+sum[now^][j])%k;
}
for(j=n;j>;j--)
sum[now][j]=(sum[now][j+]+dp[now][j])%k;
}
long long ans=;
for(i=;i<m;i++)ans=(ans+dp[now][i])%k;
printf("%lld\n",ans);
return ;
}
noi.ac day3t2 染色的更多相关文章
- [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)
题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
随机推荐
- 20165210 Java第三次实验报告
20165210 实验二 敏捷开发与XP实践 一.敏捷开发与XP实践-1 实验要求: http://www.cnblogs.com/rocedu/p/4795776.html, Eclipse的内容替 ...
- hdu4970(线性区间更新的懒操作)
思路是求出从每一点出发走到终点分别要受到多少伤害,然后和每个怪兽的血量比一下.给一个数组,告了哪些区间需要更新,我需要的就是都更新以后每个点的伤害值是多少.不涉及到区间查询,没必要用线段树或树状数组( ...
- mysql 在Windows下自动备份
1.一般备份方法主要为两种: 直接保存数据库data文件夹 mysqldump 用sql命令备份(文件存放目录必须存在) 首先cmd进入MySQL\bin,然后mysqldump --default- ...
- PageRank算法原理及实现
PageRank算法原理介绍 PageRank算法是google的网页排序算法,在<The Top Ten Algorithms in Data Mining>一书中第6章有介绍.大致原理 ...
- [BZOJ1797][AHOI2009]最小割Mincut
bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...
- loj 6083.「美团 CodeM 资格赛」数码
题目: 给定两个整数\(l\)和\(r\),对于任意\(x\),满足\(l\leq x\leq r\),把\(x\)所有约数写下来. 对于每个写下来的数,只保留最高位的那个数码.求\([1,9]\)中 ...
- npm镜像安装
安装淘宝NPM镜像 https://npm.taobao.org/ npm install -g cnpm --registry=https://registry.npm.taobao.org 配置 ...
- C++对C语言的拓展(5)—— 函数重载和函数指针结合
1.函数指针的介绍 函数指针指向某种特定类型,函数的类型由其参数及返回类型共同决定,与函数名无关.举例如下: int add(int nLeft,int nRight);//函数定义 该函数类型为in ...
- Oracle中OEM的启动与关闭
我已经选择安装了,但安装后发现开始菜单里并没有OEM,在哪里可以打开呢? 从Oracle10g开始,Oracle极大的增强了OEM工具,并通过服务器端进行EM工具全面展现.在10g中,客户端可以不必安 ...
- Java实现Queue类
Java实现Queue类 import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Sc ...