原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html


题目描述

背景
小K是个特么喜欢玩MC的孩纸。。。
描述
小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:农场a比农场b至少多种植了c个单位的作物,农场a比农场b至多多种植了c个单位的作物,农场a与农场b种植的作物数一样多。但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。

输入

第一行包括两个整数n和m,分别表示农场数目和小K记忆中的信息的数目接下来m行:如果每行的第一个数是1,接下来有三个整数a,b,c,表示农场a比农场b至少多种植了c个单位的作物如果每行第一个数是2,接下来有三个整数a,b,c,表示农场a比农场b至多多种植了c个单位的作物如果每行第一个数是3,接下来有两个整数a,b,表示农场a种植的数量与b一样。1<=n,m,a,b,c<=10000

输出

如果存在某种情况与小K的记忆吻合,输出”Yes”,否则输出”No”

样例输入

3 3
3 1 2
1 1 3 1
2 2 3 2

样例输出

Yes


题解

差分约束系统+最长路-Spfa

信息1即fa-fb≥c,故连b->a:c

信息2即fb-fa≥-c,故连a->b:-c

信息3即fa-fb=0,故连a<->b:0

然后spfa判正环即可。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 10010
using namespace std;
queue<int> q;
int head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , dis[N] , inq[N] , num[N];
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
int main()
{
int n , m , i , opt , x , y , z;
scanf("%d%d" , &n , &m);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt == 1) scanf("%d" , &z) , add(y , x , z);
else if(opt == 2) scanf("%d" , &z) , add(x , y , -z);
else add(x , y , 0) , add(y , x , 0);
}
for(i = 1 ; i <= n ; i ++ ) q.push(i);
while(!q.empty())
{
x = q.front() , q.pop() , inq[x] = 0;
for(i = head[x] ; i ; i = next[i])
{
if(dis[to[i]] < dis[x] + len[i])
{
dis[to[i]] = dis[x] + len[i];
if(!inq[to[i]])
{
inq[to[i]] = 1 , num[to[i]] ++ ;
if(num[to[i]] >= n)
{
printf("No\n");
return 0;
}
q.push(to[i]);
}
}
}
}
printf("Yes\n");
return 0;
}

【bzoj3436】小K的农场 差分约束系统+最长路-Spfa的更多相关文章

  1. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  2. P1993 小K的农场 差分约束系统

    这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...

  3. bzoj3436小K的农场

    bzoj3436小K的农场 题意: n个数,知道m条关系:a-b≥c.a-b≤c或a==b.问是否存在满足所有关系的情况.n≤10000,m≤10000. 题解: 差分约束.因为只要求是否满足,因此最 ...

  4. 【BZOJ3436】小K的农场 差分约束

    [BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...

  5. [bzoj3436]小K的农场_差分约束

    小K的农场 bzoj-3436 题目大意:给定n个点,每个节点有一个未知权值.现在有m个限制条件,形如:点i比点j至少大c,点i比点j至多大c或点i和点j相等.问是否可以通过给所有点赋值满足所有限制条 ...

  6. bzoj3436: 小K的农场(差分约束)

    3436: 小K的农场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1575  Solved: 690[Submit][Status][Discus ...

  7. BZOJ3436: 小K的农场(差分约束裸题&DFS优化判环)

    3436: 小K的农场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2111  Solved: 986[Submit][Status][Discus ...

  8. bzoj3436: 小K的农场(差分约束)

    3436: 小K的农场 题目:传送门 题解: 查分基础: t==1  a>=b+c t==2  b>=a-c t==3  a>=b+0 b>=a+0 跑最长路一A 代码: #i ...

  9. P1993 小K的农场 && 差分约束

    首先第一篇讨论的是差分约束系统解的存在 差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统 差分约束解的求解可以转化 ...

随机推荐

  1. vscode + leetcode +github 同步

    1.用VScode打开本地leetcode文件夹 C:\Users\Administrator\.leetcode 2.上传到本地git库 3.打开github桌面,上传到远程库

  2. 实例:关于ALV控件可编辑的整理

    使ALV控件中的内容可编辑 这应该是一个非常有用的功能,这样我们便可以用它来代替table control来编出一些有这现成功能的界面来.实际上,让alv中的内容可以被编辑与alv的事件无关.但是经常 ...

  3. js、jquery初始化加载顺序

    // ready 这个方法只是在页面所有的DOM加载完毕后就会触发 // 方式1 $(function(){ // do something }); // 方式2 $(document).ready( ...

  4. rsync+lsyncd实现实时同步

    1.接收端安装rsync,修改/etc/rsyncd.conf配置文件,然后启动服务. uid = rootgid = rootuse chroot = nomax connection = 4sec ...

  5. Docker迁移学习及其他

    起因: 有在一台服务器A上通过docker搭建git服务,由于某些原因需要将其迁移到另一台服务器B. 过程: 最终采用方式: 首先通过docker ps(-a) 查看目标容器,然后通过commit命令 ...

  6. python中enumerate函数使用

    enumerate()说明 enumerate()是python的内置函数 enumerate在字典上是枚举.列举的意思 对于一个可迭代的(iterable)/可遍历的对象(如列表.字符串),enum ...

  7. yarn 无法下载node-sass

    指定node-sass的下载源 yarn config set sass-binary-site http://npm.taobao.org/mirrors/node-sass

  8. PHP开发搭建环境二:开发工具PhpStorm安装、激活以及配置

    关于php的开发工具很多,目前市面上最好用最强大的莫过于PhpStorm这款开发神器了,但是鉴于很多开发者朋友在网站上下载的PhpStorm开发工具不能用,或者使用起来很不方便,笔者把最好用的下载地址 ...

  9. Java 算法随笔(一)

    1. 最大子序列和问题 给定(可能有负数)整数a(1).a(2).……a(n),求 a(1)+a(2)+……+a(j)的最大值. 也就是:在一系列整数中,找出连续的若干个整数,这若干个整数之和最大.有 ...

  10. HTTP 响应时发生错误。这可能是由于服务终结点绑定未使用 HTTP 协议造成的。这还可能是由于服务器中止了 HTTP 请求上下文(可能由于服务关闭)所致。

    第一种:无法序列化 DataTable.未设置 DataTable 名称. 第二种: 排除过程如下: 1.用WCF调试状态下的客户端调用ESB的Publish方法调用成功,证明ESB的推送是没有问题的 ...