洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星
题目描述
小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星。
有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了\(n-1\)条细线,但通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小\(Y\)找到了这个饰品的设计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,那么要求对应的小星星原来的图纸上也有细线相连。小\(Y\)想知道有多少种可能的对应方式。
只有你告诉了她正确的答案,她才会把小饰品做为礼物送给你呢。
输入输出格式
输入格式:
第一行包含\(2\)个正整数\(n\),\(m\),表示原来的饰品中小星星的个数和细线的条数。
接下来\(m\)行,每行包含\(2\)个正整数\(u\),\(v\),表示原来的饰品中小星星\(u\)和\(v\)通过细线连了起来。
这里的小星星从\(1\)开始标号。保证\(u≠v\),且每对小星星之间最多只有一条细线相连。
接下来\(n-1\)行,每行包含个\(2\)正整数\(u,v\),表示现在的饰品中小星星\(u\)和\(v\)通过细线连了起来。保证这些小星星通过细线可以串在一起。
输出格式:
输出共\(1\)行,包含一个整数表示可能的对应方式的数量。如果不存在可行的对应方式则输出\(0\)。
说明:
\(n<=17,m<=n*(n-1)/2\)
说起来这个题我看了很久啊。。
读题解也读了半天
始终搞不懂暴力的\(dp\)的复杂度是怎么证明的
题意:大致借用一下你谷题解的说法,求树\(T\)到图\(G\)的映射个数,要求点的映射一一对应,点引出的边在图中存在
图中每个点都被映射一次是个麻烦点,这要求我们现有映射集合作为状态存下来
于是这样暴力
\(dp_{i,j,s}\)代表\(i\)点映射为\(j\)点后,以\(i\)为子树的一个映射集合为\(s\)
转移时枚举\(S\)的子集,然后一个子树一个子树的枚举过去(复杂度似乎是乘起来的。。
判断一下有没有连边是否统计就可以了
既然每个点被映射一次很麻烦,不如去掉这个鬼限制
我们随便映射,只有恰好都映射的是合法的
考虑先减掉图中一个点没有被映射的情况,然后加上两个点没有,....
也就是说,我们把可以映射的点的每个子集的答案求出来,然后根据容斥原理加或者减就可以了
每一次的映射集合我们都做一次树形dp
复杂度:\(O(n^32^n)\)
Code:
#include <cstdio>
#define ll long long
ll dp[18][18];
int n,m,ha[18],g[18][18];
int Next[50],head[18],to[50],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,Next[cnt]=head[v],head[v]=cnt;
}
void dfs(int now,int fa)
{
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(v!=fa) dfs(v,now);
}
for(int i=1;i<=ha[0];i++)
{
dp[now][i]=1;
for(int j=head[now];j;j=Next[j])
{
int v=to[j];ll sum=0;
if(v==fa) continue;
for(int k=1;k<=ha[0];k++)
sum+=dp[v][k]*g[ha[i]][ha[k]];
dp[now][i]*=sum;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
g[u][v]=g[v][u]=1;
}
for(int u,v,i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
ll ans=0;
for(int s=1;s<1<<n;++s)
{
ha[0]=0;ll sum=0;
for(int i=0;i<n;i++) if(s>>i&1) ha[++ha[0]]=i+1;
dfs(1,0);
for(int i=1;i<=ha[0];i++) sum+=dp[1][i];
if(n-ha[0]&1) ans-=sum;
else ans+=sum;
}
printf("%lld\n",ans);
return 0;
}
2018.9.7
洛谷 P3349 [ZJOI2016]小星星 解题报告的更多相关文章
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
- 洛谷 P1452 Beauty Contest 解题报告
P1452 Beauty Contest 题意 求平面\(n(\le 50000)\)个点的最远点对 收获了一堆计算几何的卡点.. 凸包如果不保留共线的点,在加入上凸壳时搞一个相对栈顶,以免把\(n\ ...
- 洛谷 P4097 [HEOI2013]Segment 解题报告
P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...
随机推荐
- 安装破解IDEA(个人使用)
安装的过程,许多的教程都会有,我在这里附上一两个链接吧:https://blog.csdn.net/newabcc/article/details/80601933 他这里也有破解过程,但是比较麻烦, ...
- linux上面安装svn步骤
一.安装 使用yum,非常简单 yum install subversion 二.配置 2.1.创建仓库 我们这里在/home下建立一个名为svn的仓库(repository),以后所有代码都放在这个 ...
- django-simple-captcha
在注册页面生成验证码的时候,出现错误如下: build_attrs() takes from 1 to 2 positional arguments but 3 were given, 不知道为什么报 ...
- 722. Remove Comments
class Solution { public: vector<string> removeComments(vector<string>& source) { vec ...
- G - Dreamoon and NightMarket Gym - 101234G 优先队列+思路
题目:题目链接 题意:给出n种食物,食物有自己的价格并且可以自由搭配,每天吃之前没吃过的花费最少的搭配,问第k天的花费. 思路:第k小我们考虑用优先队列处理,虽然n比较大,但由于1 ≤ K ≤ min ...
- 从Wireshark看TCP连接的建立与关闭
TCP是一种面向连接.可靠的协议.TCP连接的建立与断开,都是需要经过通信双方的协商.用一句话概括就是:三次握手say hello(建立连接):四次握手say goodbye(断开连接).要了解TCP ...
- TouTiao开源项目 分析笔记9 实现一个问答主页面
1.根据API返回创建几个基础的Bean 1.1.WendaArticleDataBean类 API返回的数据如下: /** * cell_type : 36 * extra : {"wen ...
- TouTiao开源项目 分析笔记7 加载数据的过程
1.以新闻页中的段子数据显示为例 1.1.首先执行InitApp==>SplashActivity. 因为在AndroidManifest.xml中定义了一个<intent-filter& ...
- Java语言基础---变量与数据类型
变量的作用域 java用一对大括号“{}”作为语句块的范围,称为作用域.作用域中的变量不能重复定义:离开作用域,变量所分配的内存空间将被JVM所收回. 基本数据类型的包装类 java为基础数据类型提供 ...
- 常用数据库连接URL地址大全
1.Oracle8/8i/9i数据库(thin模式) Class.forName("oracle.jdbc.driver.OracleDriver").newInstance(); ...