题目大意

给定一个由AGCT组成的串\(t\), 求对于所有的\(L \in [1, |t|]\), 有多少个由AGCT组成的串\(s\)满足\(LCS(s, t) = L\).

Solution

传说中的DP套DP.

我们用\(f_{i, j}\)表示\(s\)的前\(i\)位与\(t\)的前\(j\)位的最长公共子序列, 则我们有

\[f_{i, j} = \max \begin{cases} f_{i - 1, j} \\ f_{i, j - 1} \\ f_{i - 1, j - 1} + [s_i = t_j] \end{cases}
\]

则\(LCS(s, t) = f[|S|][|T|]\).

逐位考虑\(s\), 假设当前到\(s\)的第\(i\)位, 我们用\(F\)表示状态: \(F = \{ f[i][1], f[i][2], \cdots, f[i][|t|] \}\). 考虑当\(i\)变成\(i + 1\)时, \(F\)会怎么变化: 对于确定的\(t\), \(F\)的变化只与\(s[i + 1]\)有关, 因此我们令\(c =s[i + 1]\), 用\(T(F, c)\)表示当\(s[i + 1] = c\)时\(F\)会变成怎么样.

我们用\(g[i][F]\)表示\(s\)的前\(i\)位与\(t\)的最长公共子序列状态为\(F\)的串\(s\)的数量, 则对于每一个\(c\), 有\(g[i + 1][T(F, c)] += g[i][F]\).

我们发现\(F\)不容易被记录, 又因为注意到\(0 \le F[i] - F[i - 1] \le 1\)且\(F[0] = 0\), 因此我们用\(S\)来表示\(\{ F[i] - F[i - 1] \}\)的状态集合. 这样我们就可以轻易地进行状态压缩了.

考虑怎么统计答案:

\[ans[k] = \sum_{F} g[|T|][F] \times [F[|T|] = k]
\]

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int N = 15, MOD = (int)1e9 + 7;
int t[N + 7];
int n, m;
int main()
{ #ifndef ONLINE_JUDGE freopen("gene.in", "r", stdin);
freopen("gene.out", "w", stdout); #endif int T; scanf("%d\n", &T);
for (int cs = 0; cs < T; ++ cs)
{
static char str[N + 7]; scanf("%s", str + 1);
n = strlen(str + 1); scanf("%d\n", &m);
for (int i = 1; i <= n; ++ i)
if (str[i] == 'A') t[i] = 1;
else if (str[i] == 'T') t[i] = 2;
else if (str[i] == 'G') t[i] = 3;
else if (str[i] == 'C') t[i] = 4;
static int trans[(1 << N) + 7][7];
for (int j = 0; j < 1 << n; ++ j) for (int c = 1; c <= 4; ++ c)
{
static int a[N + 7], b[N + 7];
memset(a, 0, sizeof a);
for (int k = 0; k < n; ++ k) a[k + 1] = a[k] + (j >> k & 1);
b[0] = 0;
for (int k = 1; k <= n; ++ k) b[k] = max(max(a[k], b[k - 1]), a[k - 1] + (c == t[k]));
int stt = 0;
for (int k = 0; k < n; ++ k) if (b[k + 1] - b[k]) stt |= 1 << k;
trans[j][c] = stt;
}
static int f[(1 << N) + 7], g[(1 << N) + 7];
memset(f, 0, sizeof f); f[0] = 1;
for (int i = 0; i < m; ++ i)
{
memset(g, 0, sizeof g);
for (int j = 0; j < 1 << n; ++ j) if (f[j]) for (int c = 1; c <= 4; ++ c)
g[trans[j][c]] = (g[trans[j][c]] + f[j]) % MOD;
swap(f, g);
}
static int ans[N + 7];
memset(ans, 0, sizeof ans);
for (int i = 0; i < 1 << n; ++ i)
{
int cnt = 0;
for (int tmp = i; tmp; tmp >>= 1) if (tmp & 1) ++ cnt;
ans[cnt] = (ans[cnt] + f[i]) % MOD;
}
for (int i = 0; i <= n; ++ i) printf("%d\n", ans[i]);
}
}

BZOJ 3864 Hero Meets Devil的更多相关文章

  1. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  2. BZOJ 3864 Hero meet devil 超详细超好懂题解

    题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...

  3. bzoj 3864: Hero meet devil

    bzoj3864次元联通们 第一次写dp of dp (:з」∠) 不能再颓废啦 考虑最长匹配序列匹配书转移 由于dp[i][j]的转移可由上一行dp[i-1][j-1],dp[i-1][j],dp[ ...

  4. bzoj 3864: Hero meet devil(dp套dp)

    题面 给你一个只由\(AGCT\)组成的字符串\(S (|S| ≤ 15)\),对于每个\(0 ≤ .. ≤ |S|\),问 有多少个只由\(AGCT\)组成的长度为\(m(1 ≤ m ≤ 1000) ...

  5. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

  6. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  7. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  8. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

  9. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

随机推荐

  1. leetcode_day01

    任务一:有效的括号 题目链接:https://leetcode-cn.com/problems/valid-parentheses/ 自己的答案: class Solution: def isVali ...

  2. sublime3 Package Control和 中文安装

    sublime3中文版需要使用PackageControl,所以首先需要安装PackageControl 一.PackageControl安装: 1.点击Preferences > Browse ...

  3. edp 基于node.js和npm的前端开发平台

    edp能做什么? 简洁的项目创建及包管理,多种工具进行本地调试,快速项目构建及代码检测,可扩展插件... 1. 安装 $ npm install -g edp 2. 包管理-导入依赖包 >edp ...

  4. macOS Mojave 深色模式

    macOS Mojave 深色模式 mac 关闭 深色模式 https://support.apple.com/zh-cn/HT208976 https://www.apple.com/cn/maco ...

  5. [bzoj3813] 奇数国 [线段树+欧拉函数]

    题面 传送门 思路 这题目是真的难读......阅读理解题啊...... 但是理解了以后就发现,题目等价于: 给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993 ...

  6. <转自原博客> NOIP2008 传纸条

    小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以 ...

  7. Lettcode Kth Largest Element in an Array

    Lettcode Kth Largest Element in an Array 题意:在无序数组中,寻找第k大的数字,注意这里考虑是重复的. 一直只会简单的O(nlogn)的做法,听说这题有O(n) ...

  8. BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】

    题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...

  9. Location of ESXi 5.1 log files

    Purpose This article provides the default location of log files on an ESXi 5.1 host. For other produ ...

  10. 知问前端——对话框UI(二)

    dialog()方法的事件 除了属性设置外,dialog()方法也提供了大量的事件,这些事件可以给各种不同状态时的对话框提供回调函数,这些回调函数中的this值等于对话框内容的div对象,不是整个对话 ...