题目大意

给定一个由AGCT组成的串\(t\), 求对于所有的\(L \in [1, |t|]\), 有多少个由AGCT组成的串\(s\)满足\(LCS(s, t) = L\).

Solution

传说中的DP套DP.

我们用\(f_{i, j}\)表示\(s\)的前\(i\)位与\(t\)的前\(j\)位的最长公共子序列, 则我们有

\[f_{i, j} = \max \begin{cases} f_{i - 1, j} \\ f_{i, j - 1} \\ f_{i - 1, j - 1} + [s_i = t_j] \end{cases}
\]

则\(LCS(s, t) = f[|S|][|T|]\).

逐位考虑\(s\), 假设当前到\(s\)的第\(i\)位, 我们用\(F\)表示状态: \(F = \{ f[i][1], f[i][2], \cdots, f[i][|t|] \}\). 考虑当\(i\)变成\(i + 1\)时, \(F\)会怎么变化: 对于确定的\(t\), \(F\)的变化只与\(s[i + 1]\)有关, 因此我们令\(c =s[i + 1]\), 用\(T(F, c)\)表示当\(s[i + 1] = c\)时\(F\)会变成怎么样.

我们用\(g[i][F]\)表示\(s\)的前\(i\)位与\(t\)的最长公共子序列状态为\(F\)的串\(s\)的数量, 则对于每一个\(c\), 有\(g[i + 1][T(F, c)] += g[i][F]\).

我们发现\(F\)不容易被记录, 又因为注意到\(0 \le F[i] - F[i - 1] \le 1\)且\(F[0] = 0\), 因此我们用\(S\)来表示\(\{ F[i] - F[i - 1] \}\)的状态集合. 这样我们就可以轻易地进行状态压缩了.

考虑怎么统计答案:

\[ans[k] = \sum_{F} g[|T|][F] \times [F[|T|] = k]
\]

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int N = 15, MOD = (int)1e9 + 7;
int t[N + 7];
int n, m;
int main()
{ #ifndef ONLINE_JUDGE freopen("gene.in", "r", stdin);
freopen("gene.out", "w", stdout); #endif int T; scanf("%d\n", &T);
for (int cs = 0; cs < T; ++ cs)
{
static char str[N + 7]; scanf("%s", str + 1);
n = strlen(str + 1); scanf("%d\n", &m);
for (int i = 1; i <= n; ++ i)
if (str[i] == 'A') t[i] = 1;
else if (str[i] == 'T') t[i] = 2;
else if (str[i] == 'G') t[i] = 3;
else if (str[i] == 'C') t[i] = 4;
static int trans[(1 << N) + 7][7];
for (int j = 0; j < 1 << n; ++ j) for (int c = 1; c <= 4; ++ c)
{
static int a[N + 7], b[N + 7];
memset(a, 0, sizeof a);
for (int k = 0; k < n; ++ k) a[k + 1] = a[k] + (j >> k & 1);
b[0] = 0;
for (int k = 1; k <= n; ++ k) b[k] = max(max(a[k], b[k - 1]), a[k - 1] + (c == t[k]));
int stt = 0;
for (int k = 0; k < n; ++ k) if (b[k + 1] - b[k]) stt |= 1 << k;
trans[j][c] = stt;
}
static int f[(1 << N) + 7], g[(1 << N) + 7];
memset(f, 0, sizeof f); f[0] = 1;
for (int i = 0; i < m; ++ i)
{
memset(g, 0, sizeof g);
for (int j = 0; j < 1 << n; ++ j) if (f[j]) for (int c = 1; c <= 4; ++ c)
g[trans[j][c]] = (g[trans[j][c]] + f[j]) % MOD;
swap(f, g);
}
static int ans[N + 7];
memset(ans, 0, sizeof ans);
for (int i = 0; i < 1 << n; ++ i)
{
int cnt = 0;
for (int tmp = i; tmp; tmp >>= 1) if (tmp & 1) ++ cnt;
ans[cnt] = (ans[cnt] + f[i]) % MOD;
}
for (int i = 0; i <= n; ++ i) printf("%d\n", ans[i]);
}
}

BZOJ 3864 Hero Meets Devil的更多相关文章

  1. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  2. BZOJ 3864 Hero meet devil 超详细超好懂题解

    题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...

  3. bzoj 3864: Hero meet devil

    bzoj3864次元联通们 第一次写dp of dp (:з」∠) 不能再颓废啦 考虑最长匹配序列匹配书转移 由于dp[i][j]的转移可由上一行dp[i-1][j-1],dp[i-1][j],dp[ ...

  4. bzoj 3864: Hero meet devil(dp套dp)

    题面 给你一个只由\(AGCT\)组成的字符串\(S (|S| ≤ 15)\),对于每个\(0 ≤ .. ≤ |S|\),问 有多少个只由\(AGCT\)组成的长度为\(m(1 ≤ m ≤ 1000) ...

  5. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

  6. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  7. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  8. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

  9. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

随机推荐

  1. input()报错:TypeError: '>=' not supported between instances of 'str' and 'int'

    今天学习python基础—分支与循环,接触到了if.在练习一个if语句的时候,出现了错误. 题目是: 根据分数划分成四个级别:优秀.良好.及格.不及格,分数是72: grade = 72if grad ...

  2. 剑指offer-替换空格02

    题目描述 请实现一个函数,将一个字符串中的每个空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. class Solution: ...

  3. eclipse 运行错误:在类XXX中找不到 main 方法, 请将 main 方法定义为: public static void main(String[] args) 否则 JavaFX 应用程序类必须扩展javafx.application.Application

    新建了一个类Hello: 代码: 第一次运行报错: 点击关闭该类的界面时出现: 点击是,然后再次打开,可以正确执行,结果为: 这是为什么....,后来发现了原因:是每次运行或调试前没有自动保存编辑的内 ...

  4. stack,heap的区别

    一个由C/C++编译的程序占用的内存分为以下几个部分    1.栈区(stack)—   由编译器自动分配释放   ,存放函数的参数值,局部变量的值等.其    操作方式类似于数据结构中的栈.    ...

  5. Linux下nginx支持.htaccess文件实现伪静态的方法!

    在Google上搜索的资料很多人都说nginx目前不支持.htaccess文件,我按照nginx的规则试验了一下,结果发现nginx是完全支持.htaccess文件的! 方法如下: 1. 在需要使用. ...

  6. Nginx日志管理配置

    1.创建日志目录 nginx 的默认日志目录所在硬盘空间可能比较小,所以根据硬盘的空间状况创建日志目录 例如:mkdir /backup/nginx_logs 2.修改nginx配置文件 配置 ngi ...

  7. 【bzoj3831】[Poi2014]Little Bird 单调队列优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826475.html 题目描述 In the Byteotian Line Forest there are   t ...

  8. hdu 1512

    思路:用并查集即可,每次合并的时候将小的集合合并到大的集合上去.理论上的平均复杂度是n*lgn*lgn. #include<map> #include<queue> #incl ...

  9. BZOJ2879 [Noi2012]美食节 【费用流】

    题目 CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食节所有的美食.然而,尝鲜的欲望是难以满足的.尽管所有的菜品都很可 ...

  10. Python之面向对象:类的内置方法

    1.def __add__(self,other): c1+c2 两个实例的加法操作就是执行__add__()方法 2.__str__(self): print一个实例的时候,执行的是__str__( ...