Python 数据挖掘 工具包整理
连接器与io
数据库
| 类别 | Python | R |
|---|---|---|
| MySQL | mysql-connector-python(官方) | RMySQL |
| Oracle | cx_Oracle | ROracle |
| MongoDB | pymongo | RMongo, rmongodb |
| ODBC | pyodbc | RODBC |
IO类
| 类别 | Python | R |
|---|---|---|
| excel | xlsxWriter, pandas.(from/to)_excel, openpyxl | openxlsx::read.xlsx(2), xlsx::read.xlsx(2) |
| csv | csv.writer | read.csv(2), read.table |
| json | json | jsonlite |
| 图片 | PIL | jpeg, png, tiff, bmp |
统计类
描述性统计
| 类别 | Python | R |
|---|---|---|
| 描述性统计汇总 | scipy.stats.descirbe | summary |
| 均值 | scipy.stats.gmean(几何平均数), scipy.stats.hmean(调和平均数), numpy.mean, numpy.nanmean, pandas.Series.mean | mean |
| 中位数 | numpy.median, numpy.nanmediam, pandas.Series.median | median |
| 众数 | scipy.stats.mode, pandas.Series.mode | 未知 |
| 分位数 | numpy.percentile, numpy.nanpercentile, pandas.Series.quantile | quantile |
| 标准差 | scipy.stats.std, scipy.stats.nanstd, numpy.std, pandas.Series.std | sd |
| 方差 | numpy.var, pandas.Series.var | var |
| 变异系数 | scipy.stats.variation | 未知 |
| 协方差 | numpy.cov, pandas.Series.cov | cov |
| (Pearson)相关系数 | scipy.stats.pearsonr, numpy.corrcoef, pandas.Series.corr | cor |
| 峰度 | scipy.stats.kurtosis, pandas.Series.kurt | e1071::kurtosis |
| 偏度 | scipy.stats.skew, pandas.Series.skew | e1071::skewness |
| 直方图 | numpy.histogram, numpy.histogram2d, numpy.histogramdd | 未知 |
回归
| 类别 | Python | R |
|---|---|---|
| 普通最小二乘法回归(ols) | statsmodels.ols, sklearn.linear_model.LinearRegression | lm, |
| 广义线性回归(gls) | statsmodels.gls | nlme::gls, MASS::gls |
假设检验
| 类别 | Python | R |
|---|---|---|
| t检验 | statsmodels.stats.ttest_ind, statsmodels.stats.ttost_ind, statsmodels.stats.ttost.paired; scipy.stats.ttest_1samp, scipy.stats.ttest_ind, scipy.stats.ttest_ind_from_stats, scipy.stats.ttest_rel | t.test |
| Pearson相关系数检验 | scipy.stats.pearsonr | cor.test |
时间序列
| 类别 | Python | R |
|---|---|---|
| AR | statsmodels.ar_model.AR | ar |
| ARIMA | statsmodels.arima_model.arima | arima |
| VAR | statsmodels.var_model.var | 未知 |
SVM(支持向量机)
| 类别 | Python | R |
|---|---|---|
| 支持向量分类器(SVC) | sklearn.svm.SVC | e1071::svm |
| 非支持向量分类器(nonSVC) | sklearn.svm.NuSVC | 未知 |
| 线性支持向量分类器(Lenear SVC) | sklearn.svm.LinearSVC | 未知 |
基于临近
| 类别 | Python | R |
|---|---|---|
| k-临近分类器 | sklearn.neighbors.KNeighborsClassifier | 未知 |
| 半径临近分类器 | sklearn.neighbors.RadiusNeighborsClassifier | 未知 |
| 临近重心分类器(Nearest Centroid Classifier) | sklearn.neighbors.NearestCentroid | 未知 |
贝叶斯
| 类别 | Python | R |
|---|---|---|
| 朴素贝叶斯 | sklearn.naive_bayes.GaussianNB | e1071::naiveBayes |
| 多维贝叶斯(Multinomial Naive Bayes) | sklearn.naive_bayes.MultinomialNB | 未知 |
| 伯努利贝叶斯(Bernoulli Naive Bayes) | sklearn.naive_bayes.BernoulliNB | 未知 |
决策树
| 类别 | Python | R |
|---|---|---|
| 决策树分类器 | sklearn.tree.DecisionTreeClassifier | tree::tree, party::ctree |
| 决策树回归器 | sklearn.tree.DecisionTreeRegressor | tree::tree, party::tree |
| 随机森林分类器 | sklearn.ensemble.RandomForestClassifier | randomForest::randomForest, party::cforest |
| 随机森林回归器 | sklearn.ensemble.RandomForestRegressor | randomForest::randomForest, party::cforest |
聚类
| 类别 | Python | R |
|---|---|---|
| kmeans | scipy.cluster.kmeans.kmeans | kmeans::kmeans |
| 分层聚类 | scipy.cluster.hierarchy.fcluster | (stats::)hclust |
关联规则
| 类别 | Python | R |
|---|---|---|
| apriori算法 | apriori(可靠性未知,不支持py3), PyFIM(可靠性未知,不可用pip安装) | arules::apriori |
| FP-Growth算法 | fp-growth(可靠性未知,不支持py3), PyFIM(可靠性未知,不可用pip安装) | 未知 |
神经网络
| 类别 | Python | R |
|---|---|---|
| 神经网络 | neurolab.net, keras.* | nnet::nnet, nueralnet::nueralnet |
| 深度学习 | keras.* | 不可靠包居多以及未知 |
文本基本操作
|
类别 |
Python | R |
|---|---|---|
| tokenize | nltk.tokenize(英), jieba.tokenize(中) | tau::tokenize |
| stem | nltk.stem | RTextTools::wordStem, SnowballC::wordStem |
| stopwords | stop_words.get_stop_words | tm::stopwords, qdap::stopwords |
| 中文分词 | jieba.cut, smallseg, Yaha, finalseg, genius | jiebaR |
| TFIDF | gensim.models.TfidfModel | 未知 |
Python 数据挖掘 工具包整理的更多相关文章
- python数据挖掘领域工具包
原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...
- 花了三个月终于把所有的 Python 库全部整理了!可以说很全面了
库名称简介 Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主要用于在终端或浏览器端构建格式 ...
- Python全部库整理
库名称简介 Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主要用于在终端或浏览器端构建格式 ...
- [转载]花了半个月,终于把Python库全部整理出来了,非常全面
库名称简介 Chardet 字符编码探测器,可以自动检测文本.网页.xml的编码. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable 主要用于在终端或浏览器端构 ...
- Python数据挖掘和机器学习
-----------------------------2017.8.9--------------------------------- 先占个坑 在接下来的一个半月里(即从现在到十一) 我将结合 ...
- Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析
Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇 ...
- 【转】常见的python机器学习工具包比较
http://algosolo.com/ 分析对比了常见的python机器学习工具包,包括: scikit-learn mlpy Modular toolkit for Data Processing ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
- !!对python列表学习整理列表及数组详细介绍
1.Python的数组分三种类型:(详细见 http://blog.sina.com.cn/s/blog_6b783cbd0100q2ba.html) (1) list 普通的链表,初始化后可以通过特 ...
随机推荐
- strace -o /tmp/dhc$$ dhclient -d eth2
http://askubuntu.com/questions/5187/why-is-dhclient-saying-siocsifaddr-permission-denied ip link add ...
- dedecms 自定义标签的方法
function lib_demotest(&$ctag,&$refObj) { global $dsql,$envs; //属性处理 $attlist="row|12,ti ...
- Android闪光灯操作
flashMode=Camera.Parameters.FLASH_MODE_TORCH;----常亮效果 Camera.Parameters.FLASH_MODE_ON----一闪一闪的效果
- hdu_2842_Chinese Rings(矩阵快速幂)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题意:解开第k个环需要先解开前(k-2)个环,并留有第(k-1)环.问解开n环最少需要几步. 题 ...
- [Lua]Lua高级教程Metatables
什么是Metatable metatable是Lua中的重要概念,每一个table都可以加上metatable,以改变相应的table的行为. Metatables举例 -- 声明一个正常的关系变量 ...
- Vowel Counting
Vowel Counting Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Tota ...
- Heartbeat+DRBD+MySQL高可用方案【转】
转自Heartbeat+DRBD+MySQL高可用方案 - yayun - 博客园 http://www.cnblogs.com/gomysql/p/3674030.html 1.方案简介 本方案采用 ...
- 深入理解javascript执行上下文(Execution Context)
本文转自:http://blogread.cn/it/article/6178 在这篇文章中,将比较深入地阐述下执行上下文 - Javascript中最基础也是最重要的一个概念.相信读完这篇文章后,你 ...
- ng-if 和 ng-show/ng-hide 之间的区别
ng-if会移除dom,生成dom,而ng-show只是改变其display属性.所以你自己看着用吧.
- Java学习笔记之接口和抽象类
接口(interface)1.interface创建一个接口,implements实现接口 interface jiekou{} class lie implements jiekou{}2.接口可以 ...