Python 数据挖掘 工具包整理
连接器与io
数据库
| 类别 | Python | R |
|---|---|---|
| MySQL | mysql-connector-python(官方) | RMySQL |
| Oracle | cx_Oracle | ROracle |
| MongoDB | pymongo | RMongo, rmongodb |
| ODBC | pyodbc | RODBC |
IO类
| 类别 | Python | R |
|---|---|---|
| excel | xlsxWriter, pandas.(from/to)_excel, openpyxl | openxlsx::read.xlsx(2), xlsx::read.xlsx(2) |
| csv | csv.writer | read.csv(2), read.table |
| json | json | jsonlite |
| 图片 | PIL | jpeg, png, tiff, bmp |
统计类
描述性统计
| 类别 | Python | R |
|---|---|---|
| 描述性统计汇总 | scipy.stats.descirbe | summary |
| 均值 | scipy.stats.gmean(几何平均数), scipy.stats.hmean(调和平均数), numpy.mean, numpy.nanmean, pandas.Series.mean | mean |
| 中位数 | numpy.median, numpy.nanmediam, pandas.Series.median | median |
| 众数 | scipy.stats.mode, pandas.Series.mode | 未知 |
| 分位数 | numpy.percentile, numpy.nanpercentile, pandas.Series.quantile | quantile |
| 标准差 | scipy.stats.std, scipy.stats.nanstd, numpy.std, pandas.Series.std | sd |
| 方差 | numpy.var, pandas.Series.var | var |
| 变异系数 | scipy.stats.variation | 未知 |
| 协方差 | numpy.cov, pandas.Series.cov | cov |
| (Pearson)相关系数 | scipy.stats.pearsonr, numpy.corrcoef, pandas.Series.corr | cor |
| 峰度 | scipy.stats.kurtosis, pandas.Series.kurt | e1071::kurtosis |
| 偏度 | scipy.stats.skew, pandas.Series.skew | e1071::skewness |
| 直方图 | numpy.histogram, numpy.histogram2d, numpy.histogramdd | 未知 |
回归
| 类别 | Python | R |
|---|---|---|
| 普通最小二乘法回归(ols) | statsmodels.ols, sklearn.linear_model.LinearRegression | lm, |
| 广义线性回归(gls) | statsmodels.gls | nlme::gls, MASS::gls |
假设检验
| 类别 | Python | R |
|---|---|---|
| t检验 | statsmodels.stats.ttest_ind, statsmodels.stats.ttost_ind, statsmodels.stats.ttost.paired; scipy.stats.ttest_1samp, scipy.stats.ttest_ind, scipy.stats.ttest_ind_from_stats, scipy.stats.ttest_rel | t.test |
| Pearson相关系数检验 | scipy.stats.pearsonr | cor.test |
时间序列
| 类别 | Python | R |
|---|---|---|
| AR | statsmodels.ar_model.AR | ar |
| ARIMA | statsmodels.arima_model.arima | arima |
| VAR | statsmodels.var_model.var | 未知 |
SVM(支持向量机)
| 类别 | Python | R |
|---|---|---|
| 支持向量分类器(SVC) | sklearn.svm.SVC | e1071::svm |
| 非支持向量分类器(nonSVC) | sklearn.svm.NuSVC | 未知 |
| 线性支持向量分类器(Lenear SVC) | sklearn.svm.LinearSVC | 未知 |
基于临近
| 类别 | Python | R |
|---|---|---|
| k-临近分类器 | sklearn.neighbors.KNeighborsClassifier | 未知 |
| 半径临近分类器 | sklearn.neighbors.RadiusNeighborsClassifier | 未知 |
| 临近重心分类器(Nearest Centroid Classifier) | sklearn.neighbors.NearestCentroid | 未知 |
贝叶斯
| 类别 | Python | R |
|---|---|---|
| 朴素贝叶斯 | sklearn.naive_bayes.GaussianNB | e1071::naiveBayes |
| 多维贝叶斯(Multinomial Naive Bayes) | sklearn.naive_bayes.MultinomialNB | 未知 |
| 伯努利贝叶斯(Bernoulli Naive Bayes) | sklearn.naive_bayes.BernoulliNB | 未知 |
决策树
| 类别 | Python | R |
|---|---|---|
| 决策树分类器 | sklearn.tree.DecisionTreeClassifier | tree::tree, party::ctree |
| 决策树回归器 | sklearn.tree.DecisionTreeRegressor | tree::tree, party::tree |
| 随机森林分类器 | sklearn.ensemble.RandomForestClassifier | randomForest::randomForest, party::cforest |
| 随机森林回归器 | sklearn.ensemble.RandomForestRegressor | randomForest::randomForest, party::cforest |
聚类
| 类别 | Python | R |
|---|---|---|
| kmeans | scipy.cluster.kmeans.kmeans | kmeans::kmeans |
| 分层聚类 | scipy.cluster.hierarchy.fcluster | (stats::)hclust |
关联规则
| 类别 | Python | R |
|---|---|---|
| apriori算法 | apriori(可靠性未知,不支持py3), PyFIM(可靠性未知,不可用pip安装) | arules::apriori |
| FP-Growth算法 | fp-growth(可靠性未知,不支持py3), PyFIM(可靠性未知,不可用pip安装) | 未知 |
神经网络
| 类别 | Python | R |
|---|---|---|
| 神经网络 | neurolab.net, keras.* | nnet::nnet, nueralnet::nueralnet |
| 深度学习 | keras.* | 不可靠包居多以及未知 |
文本基本操作
|
类别 |
Python | R |
|---|---|---|
| tokenize | nltk.tokenize(英), jieba.tokenize(中) | tau::tokenize |
| stem | nltk.stem | RTextTools::wordStem, SnowballC::wordStem |
| stopwords | stop_words.get_stop_words | tm::stopwords, qdap::stopwords |
| 中文分词 | jieba.cut, smallseg, Yaha, finalseg, genius | jiebaR |
| TFIDF | gensim.models.TfidfModel | 未知 |
Python 数据挖掘 工具包整理的更多相关文章
- python数据挖掘领域工具包
原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...
- 花了三个月终于把所有的 Python 库全部整理了!可以说很全面了
库名称简介 Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主要用于在终端或浏览器端构建格式 ...
- Python全部库整理
库名称简介 Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主要用于在终端或浏览器端构建格式 ...
- [转载]花了半个月,终于把Python库全部整理出来了,非常全面
库名称简介 Chardet 字符编码探测器,可以自动检测文本.网页.xml的编码. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable 主要用于在终端或浏览器端构 ...
- Python数据挖掘和机器学习
-----------------------------2017.8.9--------------------------------- 先占个坑 在接下来的一个半月里(即从现在到十一) 我将结合 ...
- Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析
Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇 ...
- 【转】常见的python机器学习工具包比较
http://algosolo.com/ 分析对比了常见的python机器学习工具包,包括: scikit-learn mlpy Modular toolkit for Data Processing ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
- !!对python列表学习整理列表及数组详细介绍
1.Python的数组分三种类型:(详细见 http://blog.sina.com.cn/s/blog_6b783cbd0100q2ba.html) (1) list 普通的链表,初始化后可以通过特 ...
随机推荐
- WEB组件 开发 (未完成 4-13)
整理自真阿当的阿当大话西游之WEB组件,课件中的代码下载. 14. 抽出widget类 组件分两大类: utility(大部分与UI无关的组件) 和 widget(应用层,大部分与UI相关的,日历组件 ...
- RPC简介与Thrift框架
RPC,全称是remote process call,远程过程调用,简单来讲就是调用部署在另一台服务器上的服务或者被部署在另一台服务器上的服务调用.由于各服务部署在不同机器,服务间的调用免不了网络通信 ...
- jenkins 中集成JNI的坑
有包名1.生成class> javac myjni\HelloJNI.java2.生成.h文件> javah -d include myini.HelloJNI3.生成.dll文件> ...
- 数组实现UITabview的cell设置
- android 按钮Button单击背景切换
res/drawable/btn_selected.xml <?xml version="1.0" encoding="utf-8"?> <s ...
- android应用的优化建议(转载)
首先,这是我在http://www.oschina.net/translate/40-developer-tips-for-android-optimization看到的一片文章,感觉挺有道理的,所以 ...
- Spring 框架理论基础
一. IOC 控制反转 概念解释:当我需要一个资源时,容器已经帮我准备好,我只需要接受就可以. // 加载 IOC 容器 ApplicationContext ac = new ClassPathXm ...
- Windows API 之 VirtualAlloc
Reserves, commits, or changes the state of a region of pages in the virtual address space of the cal ...
- js键盘键值大全
原文地址:http://blog.csdn.net/avenccssddnn/article/details/7950524 js键盘键值 keycode 8 = BackSpace BackSpac ...
- hdu_5734_Acperience
题目连接:hdu_5734_Acperience 多校的题我还是贴官方题解的好,方便快捷,省事!! #include<cstdio> #include<cmath> #defi ...