BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i)
一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 最后输出∏(1<=x<=logn)x^ans[x]就可以
此题的坑在于这题的组合数和数位DP的结果都是指数 对指数取模不能直接取 要取Phi(p)
于是我们对10000006取模 然后这题就WA了 由于10000007不是个质数!
10000007=941*10627 于是我们得到Phi(p)=940*10626=9988440 对这个数取模就可以
事实上不取模就能够,一定不会爆long long的。。。我是何必呢这是。。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 10000007
#define Phi_M 9988440
using namespace std;
typedef long long ll;
ll n,f[60][60],ans[60],output=1;
void Digital_DP(ll x)
{
int i,j,cnt=0;
ll now=0;
for(i=1;1ll<<i<=x;i++);
for(;~i;i--)
if(now+(1ll<<i)<=x)
{
for(j=0;j<=i;j++)
ans[j+cnt]=(ans[j+cnt]+f[i][j])%Phi_M;
++cnt;
now+=(1ll<<i);
}
}
ll Quick_Power(ll x,ll y)
{
ll re=1;
while(y)
{
if(y&1)re*=x,re%=M;
x*=x,x%=M;
y>>=1;
}
return re;
}
int main()
{
int i,j;
for(i=0;i<=55;i++)
{
f[i][0]=1;
for(j=1;j<=i;j++)
f[i][j]=(f[i-1][j]+f[i-1][j-1])%Phi_M;
}
cin>>n;
Digital_DP(n+1);
for(i=1;i<=55;i++)
output*=Quick_Power(i,ans[i]),output%=M;
cout<<output<<endl;
}
BZOJ 3209 花神的数论题 数位DP+数论的更多相关文章
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- bzoj 3209 花神的数论题——二进制下的数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...
- BZOJ 3209: 花神的数论题【数位dp】
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- [数位dp] bzoj 3209 花神的数论题
题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...
- [BZOJ 3209] 花神的数论题 【数位统计】
题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i) (1 <= i <= n) . 题目分析 总体思路是枚 ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
随机推荐
- Linux下一个patch补丁命令
此命令用于为特定软件包打补丁,他使用diff命令对源文件进行操作. 基本命令语法: patch [-R] {-p(n)} [--dry-run] < patch_file_name p:为pat ...
- 得到View Frustum的6飞机
笔者:i_dovelemon 资源:CSDN 日期:2014 / 9 / 30 主题:View Frustum, Plane, View Matrix, Perspective Projection ...
- C#中的预编译指令介绍
原文:C#中的预编译指令介绍 1.#define和#undef 用法: #define DEBUG #undef DEBUG #define告诉编译器,我定义了一个DEBUG的一个符号,他类似一个变量 ...
- GUI (图形界面)知识点
一:组件知识点 JTextField: 作用: 定义文本域,只支持单行输入. 使用: 定义文本域: JTextField jtf=new JTextField ...
- CodeForces 22D Segments 排序水问题
主题链接:点击打开链接 升序右键点.采取正确的点 删边暴力 #include <cstdio> #include <cstring> #include <algorith ...
- DataGridView绑定数据源
给DataGridView绑定数据源比較简单,方法主要有两种: 1.直接在控件属性中绑定数据源,这样的方法最简单,但它是直接连接数据库的,这样就和传DataTable的后果差点儿相同了,所以还是尽量避 ...
- 算法---高速分拣(quick sort)
在前面的排序中所描述的算法.最快的排序算法是归并排序,但是有一个缺陷合并排序排序过程的需求O(N)额外的空间.本文介绍了高速的排序算法到位排序算法,所需的复杂性的额外空间O(1). 算法介绍:高速排序 ...
- 用正交多项式作最小二乘拟合的java实现(转)
import java.util.Scanner; public class Least_square_fit { public static double Least_square_method(i ...
- Swift1_关闭
// main.swift // swift1_关闭 // Created by beyond on 15/6/12. // Copyright (c) 2015年 beyond.com All ri ...
- [Linux]history 显示命令的运行时间
显示线时间历史命令 这里的环境是centos5.8 vim ~/.bashrc 或者 ~/.bash_profile 添加 export HISTTIMEFORMAT="%F %T &quo ...