题目意思:2004^x的所有正因数的和(S)对29求余;输出结果;

原题链接

题目解析:解析参照来源:点击打开链接

因子和

6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12;

20的因子是1,2,4,5,10,20; 20的因子和是s(20)=1+2+4+5+10+20=42;

2的因子是1,2; 2的因子和是s(2)=1+2=3;

3的因子是1,3; 3的因子和是s(3)=1+3=4;

4的因子和是 s(4)=1+2+4=7;

5的因子和是 s(5)=1+5=6;

s(6)=s(2)*s(3)=3*4=12;

s(20)=s(4)*s(5)=7*6=42;

这是巧合吗?

再看 s(50)=1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.

这在数论中叫积性函数,当gcd(a,b)=1时s(a*b)=s(a)*s(b);

如果p是素数

s(p^n)=1+p+p^2+...+p^n=(p^(n+1)-1) /(p-1) (1)

例 hdu1452 Happy2004

计算 因子和 s(2004^X) mod 29,

2004=2^2 *3 *167

s(2004^X) ) = (s(2^2X))) *(s(3^X))) * (s(167^X)))

167)=22;

s(2004^X) ) = (s(2^2X))) *(s(3^X))) * (s(22^X)))

a=s(2^2X)=(2^(2X+1)-1)//根据 (1)

b=s(3^X)= (3^(X+1)-1)/2//根据 (1)

c=s(22^X)= (22^(X+1)-1)/21//根据 (1)

%运算法则 1. (a*b) %p= ( a%p) *(b%p)

%运算法则 2. (a/b) %p= ( a *b^(-1)%p)

b^(-1)是 b的逆元素 (%p)

2的逆元素是15 ()) ,因为2*15=30 % 29=1 % 29

21的逆元素是18 ()) ,因为21*18=378% 29 =1 % 29

因此

a=(powi(2,2*x+1,29)-1)%29;

b=(powi(3,x+1,29)-1)*15 %29;

c=(powi(22,x+1,29)-1)*18 %29;

ans=(a*b)% 29*c % 29;

资料拓展: 1. 高次幂快速取模链接

2.积性函数:在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。若对于某积性函数 f(n) ,就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。若将n表示成质因子分解式

则有

3.求逆元:

在计算(a/b)%Mod时,往往需要先计算b%Mod的逆元p(b有逆元的条件是gcd(b,Mod)==1,显然素数肯定有逆元),然后由(a*p)%Mod得结果c。这里b的逆元p满足(b*p)%Mod=1。先来简单证明一下:

(a/b)%Mod=c;    (b*p)%Mod=1;    ==》   (a/b)*(b*p) %Mod=c;    ==》    (a*p)%Mod=c;

从上面可以看出结论的正确性,当然这里b需要是a的因子。接下来就需要知道根据b和Mod,我们怎么计算逆元p了。扩展欧几里德算法,大家应该都知道,就是已知a、b,求一组解(x,y)使得a*x+b*y=1。这里求得的x即为a%b的逆元,y为b%a的逆元(想想为什么?把方程两边都模上b或a看看)。调用ExtGcd(b,Mod,x,y),x即为b%Mod的逆元p。

求b%Mod的逆元p还有另外一种方法,即p=b^(Mod-2)%Mod,因为b^(Mod-1)%Mod=1(这里需要Mod为素数)。

错误分析:1:

if(y&1)ans*=x%29;//误把试中ans=x*x%29

2.数据类型要用__int64,

代码实现:

#include<cstdio>
#include<cstdlib>
using namespace std;
typedef __int64 ll;
ll powmol(ll x,ll y)//高次幂取模的求x^ymod29
{
ll ans=1;
x=x%29;
while(y)
{
if(y&1)ans*=x%29;//y是奇数情况的处理;
x=x*x%29;
y>>=1;//
}
return ans;
}
int main()
{
ll x,a,b,c;
while(scanf("%I64d",&x),x)
{
a=(powmol(2,2*x+1)-1)%29;
b=(powmol(3,x+1)-1)*15%29;
c=(powmol(22,x+1)-1)*18%29;
printf("%I64d\n",(a*b)%29*c%29);
}
return 0;
}

HDU1452Happy 2004(高次幂取模+积性函数+逆元)的更多相关文章

  1. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  2. uva 10692 高次幂取模

    Huge Mod Input: standard input Output: standard output Time Limit: 1 second The operator for exponen ...

  3. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  4. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  5. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  6. NYOJ--102--次方求模(快速求幂取模)

    次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...

  7. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

  8. 《Java语言实现快速幂取模》

    快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 ...

  9. HDU 4704 Sum 超大数幂取模

    很容易得出答案就是2^(n-1) 但是N暴大,所以不可以直接用幂取模,因为除法操作至少O(len)了,总时间会达到O(len*log(N)) 显然爆的一塌糊涂 套用FZU1759的模板+顺手写一个大数 ...

随机推荐

  1. sql2008r2局域网复制订阅实操

    10.129.186.37 本机 10.129.186.95 服务器 局域网环境 复制类型:事务复制 注意点:要复制的表,必须有主键,否则不可选复制表. 要点1,局域网尝试用共享的方式保存快照文件夹, ...

  2. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  3. 一个开发原则:永远不要返回NULL

    看一篇文章:10个经典的java开发原则,里面一个原则:永远不要返回NULL. 说实在的,我对这个原则体会不是很深,平时在使用对象前,检查是否为null已经成了习惯,也是我要求开发人员的一个标准动作. ...

  4. JavaScript下全选反选的Demo程序里实现checkmeonly函数 DOM

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. CQOI2015 选数

    题目 从\([L, H]\)(\(H-L\leq 10^5\))选出\(n\)个整数,使得这些数的最大公约数为\(k\)的方案数. 算法 首先有一个很简单的转化,原问题可以简化为: 从\([\lcei ...

  6. 如何灵活使用 ActionBar, Google 音乐ActionBar 隐藏和显示效果

    ActionBar 的历史这里就不介绍了,相信大家都清楚:在一个 app 中,如果 ActionBar 运用的好,那么将会省去大量的代码,而且整个 app 效果也相当不错,大家有兴趣可以下载 goog ...

  7. Java基础05 实施接口

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 在封装与接口中,private关键字封装了对象的内部成员.经过封装,产品隐藏了内部 ...

  8. Eclipse Package Explorer视图无法打开

    打开Eclipse后Package Explorer视图无法打开,显示一个红叉,红叉后面的Deatils后,显示下面的内容: java.lang.ArrayIndexOutOfBoundsExcept ...

  9. Spring 从零開始-05

    最终能到Spring的AOP编程了,AOP的概念特别的多.所以须要你在開始之前有点了解,然后通过代码慢慢学习! - 切面(Aspect):一个关注点的模块化,这个关注点实现可能另外横切多个对象.事务管 ...

  10. 编写自定义的JDBC框架与策略模式

    本篇根据上一篇利用数据库的几种元数据来仿造Apache公司的开源DbUtils工具类集合来编写自己的JDBC框架.也就是说在本篇中很大程度上的代码都和DbUtils中相似,学完本篇后即更容易了解DbU ...