time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题意:一个袋子里有w个白老鼠,b个黑老鼠,王妃和龙依次取,王妃先取,先取到白老鼠

的为胜者,当中龙取老鼠的时候,取出一仅仅后,会有随机的一仅仅老鼠跑出来,并且取老鼠的

时候,每仅仅老鼠取到的概率是一样的,跑出来的概率也是一样的,  让你算王妃赢的概率。

思路: dp[i][j] 表示 白老鼠为i仅仅,黑老鼠为j仅仅时,王妃赢的概率,

有四种状态:

(1)  王妃取到白鼠  。  dp[ i ][ j ] + =  i  / ( i + j ) ;

(2)  王妃取到黒鼠,龙取到白鼠 。    dp[ i ][ j ] + = 0.0 ;

(3) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅黑鼠  。 dp[i][j]+=j/(i+j) * (j-1)*/(i+j-1) * (j-2)*/(i+j-2) * dp[i][j-3];

(4) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅白鼠  。 dp[i][j]+=j*/(i+j) * (j-1)*/(i+j-1) * i*/(i+j-2) * dp[i-1][j-2];

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1100; double dp[maxn][maxn];
int n,m; int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++) dp[i][0]=1.0;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
dp[i][j]+=(i*1.0)/(i+j);
if(j>=3) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
if(j>=2) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
}
printf("%.9lf\n",dp[n][m]);
}
return 0;
}

code forces 148D Bag of mice (概率DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  6. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  7. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  8. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. 作为一个新人,如何学习嵌入式Linux?

    作为一个新人.如何学习嵌入式Linux?我一直在问太多次,特写文章来回答这个问题. 在学习嵌入式Linux之前.肯定要有C语言基础.汇编基础有没有无所谓(就那么几条汇编指令,用到了一看就会).C语言要 ...

  2. 【原创】构建高性能ASP.NET站点之一 剖析页面的处理过程(前端)

    原文:[原创]构建高性能ASP.NET站点之一 剖析页面的处理过程(前端) 构建高性能ASP.NET站点之一 剖析页面的处理过程(前端) 前言:在对ASP.NET网站进行优化的时候,往往不是只是懂得A ...

  3. This Android SDK requires Android Developer Toolkit version 22.6.2 or above.

    今天,在android SDK升级时间,我遇到上述错误,经过一番努力仍克服. 解决方法:android-sdk-windows\tools\lib中间plugin.prop在文档 plugin.ver ...

  4. ios崩溃日志1

    Terminating app due to uncaught exception 'NSInternalInconsistencyException', reason: 'Could not loa ...

  5. 姿势体系结构的详细解释 -- C

    我基本上总结出以下4部分: 1.问题的足迹大小. 2.字节对齐问题. 3.特别保留位0. 4.这种结构被存储在存储器中的位置. #include <stdio.h> #include &l ...

  6. 【转】Android 4.3源码下载及问题解决

    [html] view plaincopy 1 2 3 4 5 6 7 8 9 10 11 jianguoliao@jianguoliao-Lenovo-IdeaPad-Y470:~$ cat /et ...

  7. A == B ?(杭州电2054)

    A == B ? Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. hdu 4912 Paths on the tree(树链拆分+贪婪)

    题目链接:hdu 4912 Paths on the tree 题目大意:给定一棵树,和若干个通道.要求尽量选出多的通道,而且两两通道不想交. 解题思路:用树链剖分求LCA,然后依据通道两端节点的LC ...

  9. C++ 堆 和 堆 分析

    [摘要] 堆和栈,即是数据结构,又是分配存储空间的不同方式.在数据结构上.堆是树型层次结构,结点按keyword次序排列,经常使用的堆为二叉堆:栈是一种先进后出的数据结构.在内存分配上的堆和栈,首要差 ...

  10. Team Foundation Server 2015使用教程--权限为读取器的团队成员连接tfs及checkin操作