time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题意:一个袋子里有w个白老鼠,b个黑老鼠,王妃和龙依次取,王妃先取,先取到白老鼠

的为胜者,当中龙取老鼠的时候,取出一仅仅后,会有随机的一仅仅老鼠跑出来,并且取老鼠的

时候,每仅仅老鼠取到的概率是一样的,跑出来的概率也是一样的,  让你算王妃赢的概率。

思路: dp[i][j] 表示 白老鼠为i仅仅,黑老鼠为j仅仅时,王妃赢的概率,

有四种状态:

(1)  王妃取到白鼠  。  dp[ i ][ j ] + =  i  / ( i + j ) ;

(2)  王妃取到黒鼠,龙取到白鼠 。    dp[ i ][ j ] + = 0.0 ;

(3) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅黑鼠  。 dp[i][j]+=j/(i+j) * (j-1)*/(i+j-1) * (j-2)*/(i+j-2) * dp[i][j-3];

(4) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅白鼠  。 dp[i][j]+=j*/(i+j) * (j-1)*/(i+j-1) * i*/(i+j-2) * dp[i-1][j-2];

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1100; double dp[maxn][maxn];
int n,m; int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++) dp[i][0]=1.0;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
dp[i][j]+=(i*1.0)/(i+j);
if(j>=3) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
if(j>=2) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
}
printf("%.9lf\n",dp[n][m]);
}
return 0;
}

code forces 148D Bag of mice (概率DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  6. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  7. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  8. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. HDU 3715 Go Deeper(2-sat)

    HDU 3715 Go Deeper 题目链接 题意:依据题意那个函数,构造x数组.问最大能递归层数 思路:转化为2-sat问题,因为x仅仅能是0.1,c仅仅能是0,1.2那么问题就好办了,对于0, ...

  2. Chapter 1 Securing Your Server and Network(4):使用虚拟服务帐号

    原文:Chapter 1 Securing Your Server and Network(4):使用虚拟服务帐号 原文出处:http://blog.csdn.net/dba_huangzj/arti ...

  3. hadoop出现namenode running as process 18472. Stop it first.

    hadoop出现namenode running as process 18472. Stop it first.等等,类别似几个的出现. namenode running as process 32 ...

  4. HDU 4946 Area of Mushroom 凸包

    链接:pid=4946">http://acm.hdu.edu.cn/showproblem.php?pid=4946 题意:有n个人.在位置(xi,yi),速度是vi,假设对于某个点 ...

  5. 孙陪你,了解它的权力--Kinect结合的发展Unity3D游戏应用开发

    unity3d正在使用kinect三维模型数据控制(它切成脚本) 博主在做项目时须要利用kinect数据控制三维模型中人物的动作.但不是实时控制,而是利用之前获得的骨骼数据,直接控制.无需再利用脚本打 ...

  6. ZOJ 3795 Grouping(Tarjan收缩点+DAG)

    Suppose there are N people in ZJU, whose ages are unknown. We have some messages about them. The i-t ...

  7. NET MVC权限验证

    ASP.NET MVC权限验证 封装类 写该权限类主要目地 为了让权限配置更加的灵活,可以根据SQL.json.或者XML的方式来动态进行页面的访问控制,以及没有权限的相关跳转. 使用步骤 1.要建一 ...

  8. iOS 生成随机颜色(UIColor)

    #import <UIKit/UIKit.h> @interface UIColor (RandomColor) +(UIColor *) randomColor; @end #impor ...

  9. .net卸载程序制作

    原文:.net卸载程序制作 方法一: 在打包项目中添加文件msiexec.exe(一般在c:\windows\system32(系统目录中)找到). 在文件系统视图中选择应用程序文件,在msiexec ...

  10. urlrewrite使用地址重写

    地址重写: 主要是为了站点的安全. 比如我们平时的地址请求 地址重写前,訪问路径是: /read.egov?action=read&bid=2 地址重写后,訪问路径是:/read-read-2 ...