time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题意:一个袋子里有w个白老鼠,b个黑老鼠,王妃和龙依次取,王妃先取,先取到白老鼠

的为胜者,当中龙取老鼠的时候,取出一仅仅后,会有随机的一仅仅老鼠跑出来,并且取老鼠的

时候,每仅仅老鼠取到的概率是一样的,跑出来的概率也是一样的,  让你算王妃赢的概率。

思路: dp[i][j] 表示 白老鼠为i仅仅,黑老鼠为j仅仅时,王妃赢的概率,

有四种状态:

(1)  王妃取到白鼠  。  dp[ i ][ j ] + =  i  / ( i + j ) ;

(2)  王妃取到黒鼠,龙取到白鼠 。    dp[ i ][ j ] + = 0.0 ;

(3) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅黑鼠  。 dp[i][j]+=j/(i+j) * (j-1)*/(i+j-1) * (j-2)*/(i+j-2) * dp[i][j-3];

(4) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅白鼠  。 dp[i][j]+=j*/(i+j) * (j-1)*/(i+j-1) * i*/(i+j-2) * dp[i-1][j-2];

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1100; double dp[maxn][maxn];
int n,m; int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++) dp[i][0]=1.0;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
dp[i][j]+=(i*1.0)/(i+j);
if(j>=3) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
if(j>=2) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
}
printf("%.9lf\n",dp[n][m]);
}
return 0;
}

code forces 148D Bag of mice (概率DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  6. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  7. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  8. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. LeetCode219:Contains Duplicate II

    Given an array of integers and an integer k, find out whether there there are two distinct indices i ...

  2. POJ3061 Subsequence(二进制前缀和法律+仿真足)

    二分法+前缀和法律 满足子序列长度的条件(0,n)之间,sum[x+i]-sum[i]从i元素开始序列长度x和.前缀和可在O(n)的时间内统计 sum[i]的值.再用二分找出满足条件的最小的子序列长度 ...

  3. CodeCounter代码统计

    今天一天写的,困死了 开发环境:VS2012 + WIN8-x64, MFC CSDN下载链接:http://download.csdn.net/detail/npu_wy/7405577 百度云下载 ...

  4. 【iOS】Web Color 的 Swift 实现

    用Swift语言重写Web Color这个类. 这次是用函数实现的,感觉也非常简洁.眼下(2014.6.28) Xcode 6的方法提示还不健全,就仅仅实现了用颜色名字创建颜色的功能. 最新代码&am ...

  5. grep之字符串搜索算法Boyer-Moore由浅入深(比KMP快3-5倍)(转)

    这篇长文历时近两天终于完成了,前两天帮网站翻译一篇文章“为什么GNU grep如此之快?”,里面提及到grep速度快的一个重要原因是使用了Boyer-Moore算法作为字符串搜索算法,兴趣之下就想了解 ...

  6. 十天学会php第五天

    学习目标:学会读取数据    先看两个函数:    1.mysql_query    送出一个 query 字符串. 语法   : int mysql_query(string query, int ...

  7. 走向DBA[MSSQL篇] 积跬步行千里

    原文:走向DBA[MSSQL篇] 积跬步行千里 不知道大家对SQL系列的感不感兴趣 先在这里探个路 本文针对的读者为SQL菜鸟 欢迎大牛驳论或者补充 既然是探路篇 就先说下数据过滤中的偏门匹配 希望能 ...

  8. KMP该算法解释(最长公共子)

    一个:介绍KMP算法之前,首先解释一下BF算法 (1)BF算法(传统的匹配算法,是最简单的算法) BF算法是一种常见的模式匹配算法,BF该算法的思想是目标字符串S模式串的第一个字符P的第一个字符,以匹 ...

  9. Ajax基础知识(二)

    接上一篇  Ajax基础知识(一) 在上一篇博客里,抛弃了VS中新建aspx页面,拖个button写上C#代码的方式.使用ajax的方式,异步向服务器请求数据.我们让服务器只简单的返回一个" ...

  10. Kafka (一)

    使用Kafka最新版本0.9 Kafka 配置 1. 安装 首先需要安装Java,推荐安装Java8,不然会出现一些莫名其妙的错误 kafka_2.11-0.9.0.0.tgz tar -xzf ka ...