开源QQ群: .net 开源基础服务  238543768

开源地址: http://git.oschina.net/chejiangyi/Dyd.BusinessMQ

## 业务消息队列 ##
业务消息队列是应用于业务的解耦和分离,应具备分布式,高可靠性,高性能,高实时性,高稳定性,高扩展性等特性。

## 优点: ##
- 大量的业务消息堆积能力
- 无单点故障及故障监控,异常提醒
- 生产者端负载均衡,故障转移,故障自动恢复,并行消息插入。
- 消费者端负载均衡,故障保持,故障自动恢复,并行消息消费。
- 消息高可靠性持久化,较高性能,较高实时性,高稳定性,高扩展性。
- 支持99*99个消息分区,单个消息分区单天支持近1亿的消息存储。
- 消费者拉方式获取消息,在高并发,大量消息涌入的情况下,只要消费能力足够,不会有消息延迟,消息越多性能越好。

## 缺点: ##
- 能保证消息顺序插入,保证相同分区的消息是顺序的(排除网络延迟),但是多个分区之间的可能是乱序的。
- 消息并行消费或者多个分区并行消费或者负载均衡情况下的,消息消费顺序是乱序。

## 缺点原因: ##
- 消息的负载均衡是基于消息的分区存储,故多个分区之间的消息是乱序的,但是相同分区的消息是顺序的。
- 消息的消费者负载均衡也是基于消息的分区进行均衡的,同时单个消费者订阅多个分区的情况下,也可并行进行消费。意味着不同分区的消息的消费是乱序的,但是相同分区的消息消费是顺序的。

## 缺点解决方案: ##
- 生产者自定义负载均衡算法,按照业务维度(用户,商户)等进行分区(多个用户之间可以消息乱序,单个用户的消息必须是顺序的),不同维度可以指向不同的分区,但是单个维度的消息是可以保证顺序的。
- 本解决方案在故障的情况下,故障会移除某些故障节点,意味着故障节点会立即报错(当然也可自己指定故障节点进行转移,但是转移的节点消息会被提前消费,故障的消息会在恢复故障后重新消费,这样也会出现故障程度上的消息乱序消费)。
- 本解决方案在线上无缝扩容和扩展性能方面也会有限制,看要具体的负载均衡算法,但是一般情况下,如果要扩容还是会进行部分消息迁移的情况。

## 问答: ##
### *1.大量的业务消息堆积能力,如何实现?* ###
  每个分区表支持约1亿的消息存储,可以通过增加分区表进行扩容。消费者进行消息消费,内部仅保留某个分区上一次消费的指针,所以不会影响消费者。
  消息持久化到磁盘,不会在内存驻留,理论上不影响内存。

### *2.无单点故障及故障监控,异常提醒?* ###
  故障一般会发生在redis,数据节点,管理中心,日志中心。
  redis节点故障会影响消费者的消息消费响应及时度,一般延迟5s以内。不会影响消息消费速度和消息消费QPS
  数据节点故障会影响生产者和消费者的消息,并造成消息暂时丢失(但是都是可恢复的,具体的看数据库的高可用做到什么程度)。
  生产者端会无缝的进行节点移除,但是会默认1分钟重新尝试重连。消费者会持续报错至日志中,但是不会影响其他分区消费。
  管理中心故障会影响生产者和消费者的心跳检测和新注册的生产者,消费者,但不会影响生产者和消费者具体的消息存储和发送接收。
  日志中心故障不会影响生产者和消费者,但是影响日志的打印,日志中心故障会通知公司内部监控平台。
  虽然故障不会影响线上已有的消息运行,但是还是会在高并发情况下出现性能问题,和系统稳定性,所以一旦发现要重视和及时处理。

### *3.生产者端负载均衡,故障转移,故障自动恢复,并行消息插入?* ###
  默认负载均衡采用多个分区顺序轮询插入,在并发情况下轮询插入是并行插入到不同分区的;某个数据节点出现故障,会移除相关数据节点的所有分区;
  默认1分钟会重新载入故障分区进行重试。

### *4.消费者端负载均衡,故障保持,故障自动恢复,并行消息消费。* ###
  默认消费者端负载均衡是根据消费者订阅的分区进行的(一个消费者可以订阅多个分区,多个相同业务的消费者可以订阅多个不同分区进行负载)。
  一个消费者订阅多个分区,这个消费者可以开启并行进行多分区消费。并行度=分区数,效果理论上最佳。
  分区节点出现故障等,单个分区或者数据节点就会暂停消费,并通知日志中心打印错误日志。当故障恢复后,消费继续进行。

### *5.消息高可靠性持久化,较高性能,较高实时性,高稳定性,高稳定性。* ###
  消息传递到消息中心后,立即持久化到磁盘,故不会丢失消息。生产者可以采用多个分区进行并行插入,消费者可以采用并行进行消息消费,故理论上性能是可扩展无限量的。
  消息是通过拉取的方式获取的,发送消息会由redis进行即时通知消费者拉取(即时消息默认会合并在500ms内redis通知消息),一般在20ms内消息会被消费掉。
  批量拉消息的方式相对push的消息推送方式在高并发和大量消息处理的情况下,消息发送性能应该是更优的。
  稳定性是基于数据库的稳定性和故障转移层面来确保的,扩展性体现在线上无缝的迁移和扩容。

### *6.支持9999个消息分区,单个消息分区单天支持近1亿的消息存储。* ###
  数据节点是01~99个,节点里面的表分区是01~99个,所以可以支持近1万个分区节点。单表的mqid最大应该是(1亿-1)条,应该满足一般的业务需求,
  若不能满足,可以通过多个分区的方式扩容。

### *7.消费者拉方式获取消息,在高并发,大量消息涌入的情况下,只要消费能力足够,不会有消息延迟,消息越多性能越好。* ###
  push推消息的模式能保证更高的实时性,但是在大量消息的情况下,消息堆积的情况更严重,性能会有所影响。
  pull拉消息的模式在保证消息实时性方面会略差,但是在大量消息涌入的情况下,批量拉消息效率更加。而且会将消息分发的负载转移到多个消费者端上。

## 未来改进: ##
1.  未来采用leveldb重写存储。
1.  剥离broker服务用于支持相对可靠的消息服务。
1.  消息完成标记本地缓存/持久化(或者存储redis),每秒提交更新至数据库,消除频繁消费导致的瓶颈。

## 架构示意图 ##

## 使用demo示例 ##

 /// <summary>
/// 发送消息
/// </summary>
/// <param name="msg"></param>
public void SendMessageDemo(string msg)
{
//发送字符串示例
var p = ProducterPoolHelper.GetPool(new BusinessMQConfig() {
ManageConnectString = "server=192.168.17.201;Initial
Catalog=dyd_bs_MQ_manage;User ID=sa;Password=Xx~!@#;" },//管理中心数据库
"dyd.mytest3");//队列路径 .分隔,类似类的namespace,是队列的唯一标识,要提前告知运维在消息中心注册,方可使用。
p.SendMessage(@"");
//发送对象示例
/* var obj = new message2 { text = "文字", num = 1 };
var p = ProducterPoolHelper.GetPool(new BusinessMQConfig() {
ManageConnectString = "server=192.168.17.237;Initial
Catalog=dyd_bs_MQ_manage;User ID=sa;Password=Xx~!@#;" },//管理中心数据库
"test.diayadian.obj");//队列路径 .分隔,类似类的namespace,是队列的唯一标识,要提前告知运维在消息中心注册,方可使用。
p.SendMessage<message>(obj);
*/
} private ConsumerProvider Consumer;
/// <summary>
/// 接收消息
/// </summary>
/// <param name="action"></param>
public void ReceiveMessageDemo(Action<string> action)
{
if (Consumer == null)
{
Consumer = new ConsumerProvider();
Consumer.Client = "dyd.mytest3.customer1";//clientid,接收消息的(消费者)唯一标示,一旦注册以后,不能更改,业务下线废弃后必须要告知运维,删除消费者注册。
Consumer.ClientName = "客户端名称";//这个相对随意些,主要是用来自己识别的,要简短
Consumer.Config = new BusinessMQConfig() { ManageConnectString =
"server=192.168.17.201;Initial Catalog=dyd_bs_MQ_manage;User
ID=sa;Password=Xx~!@#;" };
Consumer.MaxReceiveMQThread = ;//并行处理的线程数,一般为1足够,若消息处理慢,又想并行消费,则考虑 正在使用的分区=并行处理线程数 为并行效率极端最优,但cpu消耗应该不小。
Consumer.MQPath = "dyd.mytest3";//接收的队列要正确
Consumer.PartitionIndexs = new List<int>() { , , ,, , , , };//消费者订阅的分区顺序号,从1开始
Consumer.RegisterReceiveMQListener<string>((r) =>
{
/*
* 这些编写业务代码
* 编写的时候要注意考虑,业务处理失败的情况。
* 1.重试失败n次。
* 2.重试还不行,则标记消息已被处理。然后跳过该消息处理,自己另外文档记录这种情况。
* 消息被消费完毕,一定要调用MarkFinished,标记消息被消费完毕。
*/
action.Invoke(r.ObjMsg);
r.MarkFinished();
});
} }
/// <summary>
/// 关闭消息订阅连接
/// </summary>
public void CloseReceiveMessage()
{
//注册消费者消息,消费者务必要在程序关闭后关掉(dispose)。否则导致异常终止,要人工等待连接超时后,方可重新注册。
if (Consumer != null)
{
Consumer.Dispose();
Consumer = null;
}
}
}

部分截图

备注:.net开源的消息队列很少,特别是针对业务的高可靠性的消息队列;希望这个开源的消息队列,能够为.net领域带来更多解决方案,更多的思路和架构设计;同时也希望了解消息队列的人能够给于这个解决方案更多的建议和完善意见。

作者:车江毅

.net 分布式架构之业务消息队列的更多相关文章

  1. kafka高吞吐量的分布式发布订阅的消息队列系统

    一:kafka介绍kafka(官网地址:http://kafka.apache.org)是一种高吞吐量的分布式发布订阅的消息队列系统,具有高性能和高吞吐率. 1.1 术语介绍BrokerKafka集群 ...

  2. Redis的n种妙用,分布式锁,分布式唯一id,消息队列,抽奖……

    介绍 redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset) Redis用作缓存,主要两个 ...

  3. BS架构下使用消息队列的工作流程

    异步通信 对于BS(Browser-Server 浏览器)架构,很多情景下server的处理时间较长. 如果浏览器发送请求后,保持跟server的连接,等待server响应,那么一方面会对用户的体验有 ...

  4. 7月目标 socket , 一致性哈希算法 ; mongodb分片; 分布式消息队列; 中间件的使用场景

      分布式的基础:一致性哈希  路由算法的一致性hash http://www.jiacheo.org/blog/174 http://www.tuicool.com/articles/vQVbmai ...

  5. 分布式事务解决方案(二)消息系统避免分布式事务 & MQ事务消息 & Sagas 事务模型

    参考文档: 如何用消息系统避免分布式事务:http://blog.jobbole.com/89140/ https://www.cnblogs.com/savorboard/p/distributed ...

  6. 消息队列扫盲(RocketMQ 入门)

    消息队列扫盲 消息队列顾名思义就是存放消息的队列,队列我就不解释了,别告诉我你连队列都不知道似啥吧? 所以问题并不是消息队列是什么,而是 消息队列为什么会出现?消息队列能用来干什么?用它来干这些事会带 ...

  7. 消息通讯之关于消息队列MQ必须了解的相关概念

    目录 系统通讯方式有哪些? 消息队列的应用场景 消息队列通讯模型 常见的消息协议 AMQP MQTT ATOMP JMS 小结 系统通讯方式有哪些? RPC调用 RPC 全称 Remote Proce ...

  8. 消息队列-rabbitMQ

    消息队列两个用处:服务间解耦,缓解压力(削峰平谷),以前用过ZMQ.狼厂内部的NMQ,现在接触了java开源的kafka和RabbitMQ.目前先不求甚解,有个大概的认识. RabbitMQ的安装和入 ...

  9. 消息总线VS消息队列

    前段时间实现了一个基于RabbitMQ的消息总线,实现的过程中自己也在不断得思考.总结以及修正.需要考虑各个维度:效率.性能.网络.吞吐量.甚至需要自己去设想API可能的使用场景.模式.不过能有一件事 ...

随机推荐

  1. java中的字符串相关知识整理

    字符串为什么这么重要 写了多年java的开发应该对String不陌生,但是我却越发觉得它陌生.每学一门编程语言就会与字符串这个关键词打不少交道.看来它真的很重要. 字符串就是一系列的字符组合的串,如果 ...

  2. JS正则表达式常用总结

    正则表达式的创建 JS正则表达式的创建有两种方式: new RegExp() 和 直接字面量. //使用RegExp对象创建 var regObj = new RegExp("(^\\s+) ...

  3. 发布:.NET开发人员必备的可视化调试工具(你值的拥有)

    1:如何使用 1:点击下载:.NET可视化调试工具 (更新于2016-12-29 19:11:00) (终于彻底兼容了部分VS环境下无法使用的问题) 2:解压RAR后执行:CYQ.VisualierS ...

  4. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

  5. Android数据加密之异或加密算法

    前言: 这几天被公司临时拉到去做Android IM即时通信协议实现,大致看了下他们定的协议,由于之前没有参与,据说因服务器性能限制,只达成非明文传递,具体原因我不太清楚,不过这里用的加密方式是采用异 ...

  6. 从零开始编写自己的C#框架(25)——网站部署

    导航 1.关掉访问保护 2.发布网站 3.复制网站到服务器 4.添加新网站 5.设置网站访问权限 6.设置文件夹访问权限 7.控制可更新文件夹执行权限 8.设置“应用程序池”.net版本与模式 9.附 ...

  7. C#多线程之线程同步篇2

    在上一篇C#多线程之线程同步篇1中,我们主要学习了执行基本的原子操作.使用Mutex构造以及SemaphoreSlim构造,在这一篇中我们主要学习如何使用AutoResetEvent构造.Manual ...

  8. 开发者的利器:Docker 理解与使用

    困扰写代码的机器难免会被我们安装上各种各样的开发工具.语言运行环境和引用库等一大堆的东西,长久以来不仅机器乱七八糟,而且有些相同的软件还有可能会安装不同的版本,这样又会导致一个项目正常运行了,却不小心 ...

  9. APP多版本共存,服务端如何兼容?

    做过APP产品的技术人员都知道,APP应用属于一种C/S架构的,所以在做多版本兼容,升级等处理则比较麻烦,不像web应用那么容易.下面将带大家分析几种常见的情况和应对方式: 小改动或者新加功能的 这种 ...

  10. iOS 自定义方法 - 不完整边框

    示例代码 ///////////////////////////OC.h////////////////////////// ////  UIView+FreeBorder.h//  BHBFreeB ...