题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009

首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串。

为了dp,需要记录第 i 个位置的后缀已经有几位和模式串的前几位吻合了。

所以想到可以转移到 j+1 或 0 。

但其实不一定是0,因为可能和前面的接上。这里就要用kmp了!

注意可以和很多位置接上的时候,应该和最长的那个接上,而不是和每个 nxt 都接上,也不是什么能选择的。

知道了当前 j 能转移到哪些 j ,就可以矩阵优化了。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int n,m,mod,nxt[N],prn,ch[N];
struct Matrix{
int a[N][N];
Matrix(){memset(a,,sizeof a);}
Matrix operator * (const Matrix &b)const
{
Matrix c;
for(int i=;i<m;i++)//<m is enough
for(int k=;k<m;k++)
for(int j=;j<m;j++)
(c.a[i][j]+=a[i][k]*b.a[k][j]%mod)%=mod;
return c;
}
}r,ans;
void getnxt()
{
for(int i=;i<=m;i++)//i=2,or nxt[1]=1
{
int k;
for(k=nxt[i-];ch[k+]!=ch[i]&&k;k=nxt[k]);
nxt[i]=k+(ch[k+]==ch[i]);
}
for(int i=;i<m;i++)//i=0 //<m is enough
{
for(int j=;j<=;j++)
{
int k;
for(k=i;k&&ch[k+]!=j;k=nxt[k]);//k=i!!
if(ch[k+]==j)r.a[i][k+]++;//only keep 1,keep the longest
else r.a[i][]++;
// if(ch[k+1]==j)r.a[i][k+1]++;
// if(ch[1]==j)r.a[i][1]++;// when k=0
// else r.a[i][0]++;//
}
// if(i&&i!=m)r.a[i][i+1]++;//don't forget, and i!=0
}
}
int main()
{
scanf("%d%d%d",&n,&m,&mod);
for(int i=;i<=m;i++)scanf("%1d",&ch[i]);
getnxt();
// for(int i=0;i<m;i++)ans.a[i][i]=1;//!!
ans.a[][]=;
while(n){if(n&)ans=ans*r;r=r*r;n>>=;}
for(int i=;i<m;i++)(prn+=ans.a[][i])%=mod;
printf("%d\n",prn);
return ;
}

bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp的更多相关文章

  1. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  2. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

  3. BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

    ---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...

  4. 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵

    原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...

  5. 洛谷P3193 GT考试 kmp+矩阵优化dp

    题意 求\(N\)位数字序列(可以有前导0)中不出现某\(M\)位子串的个数,模\(K\). \(N<=10^9,M<=20,K<=1000\) 分析 设\(dp[i][j]\)表示 ...

  6. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

  7. BZOJ.1009.[HNOI2008]GT考试(KMP DP 矩阵快速幂)

    题目链接 设f[i][j]为当前是第i位考号.现在匹配到第j位(已有j-1位和A[]匹配)的方案数 因为假如当前匹配j位,如果选择的下一位与A[j+1]不同,那么新的匹配位数是fail[j]而不是0, ...

  8. bzoj1009 GT考试 (kmp+矩阵优化dp)

    设f[i][j]是到第i位 已经匹配上了j位的状态数 然后通过枚举下一位放0~9,可以用kmp处理出一个转移的矩阵 然后就可以矩阵快速幂了 #include<bits/stdc++.h> ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. FreeRtos堆栈检测应用

    Free rtos每个任务都有自己的栈空间,每个任务需要的栈大小也是不同的.如果堆栈过小就会造成栈溢出,有时候栈溢出发生在某种特定顺序的任务切换中,比较难检测出.所以前期测试和监控任务栈用量就显得尤其 ...

  2. 【Head First Servlets and JSP】笔记3:Servlet的生命周期

    1.servlet的存在就是要为客户服务.servlet的任务就是得到一个用户的请求,再发回一些响应. 请求可能很复杂,也可能很简单,例如,“为我的购物车结账”,这个请求携带了一些重要的数据,你必须知 ...

  3. K8s ipvs mode kube-proxy

    IPVS vs. IPTABLES IPVS模式在Kubernetes 1.8中被引入,在1.9中进入beta测试. IPTABLES模式在1.1版本中被添加进来,在1.2开始就变成了默认的操作模式. ...

  4. 用nc做网络压力测试

    测试结果:         1.数据的收发正常,没有出现丢包:         2.平均数据接发速率为:112MB/S,基本用完的千兆带宽.   测试方法:         1.通过FTP拷贝3.6G ...

  5. windows10 搜索桌面搜索功能失效的解决

    windows桌面的搜索框用起来很方便,很多时候直接把不常用的程序的快捷方式删掉,直接从搜索框搜索就可以,但是这两天突然不能用了,今天晚上找了一下原因,终于弄好了. 参考知乎上面的陈滔滔的方法: ht ...

  6. wareshark网络协议分析之ARP

    一.ARP协议简介 简单的说ARP协议就是实现ip地址到物理地址的映射.当一台主机把以太网数据帧发送到位于同一局域网上的另一台主机时,是根据48bit的以太网地址(物理地址)来确定网络接口的. ARP ...

  7. SQL server 2008 T-sql 总结

    数据库的实现 1.添加数据:insert [into] 表名 (字段1,字段2,···) values (值1,值2,····)     其中,into可选. 2.修改数据:update 表名 set ...

  8. Visual Studio中用于ASP.NET Web项目的Web服务器

    当您在 Visual Studio 中开发 Web 项目时,需要 Web 服务器才能测试或运行它们. 利用 Visual Studio,您可以使用不同的 Web 服务器进行测试,包括 IIS Expr ...

  9. Qt 安装事件过滤器installEventFilter

    Qt 安装事件过滤器installEventFilter (2013-01-28 14:29:18) 转载▼   分类: 工作笔记 Qt的事件模型一个强大的功能是一个QObject对象能够监视发送其他 ...

  10. C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...