Happy 2006
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11458   Accepted: 4001

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5
思路:若a与m互素,那么a+t*m(t>=1)与m 也互素,否则不互素.设小于m且与m互素的数有n个,分别为a(0),a(1),a(2),...,a(n-1).那么第n+1个为a0+m,第n+2个为a(1)+m...第k个为m*(k-1)+a((k-1)%n);
#include <cstdio>
using namespace std;
const int MAXN=;
int m,k;
int relative[MAXN],top;
int gcd(int a,int b)
{
if(b==) return a;
else return gcd(b,a%b);
}
void sieve()
{
for(int i=;i<=m;i++)
{
if(gcd(i,m)==)
{
relative[top++]=i;
}
}
}
int main()
{
while(scanf("%d%d",&m,&k)!=EOF)
{
top=;
sieve();
int n=(k-)/top;
int z=(k-)%top;
int res=n*m+relative[z];
printf("%d\n",res);
}
return ;
}

容斥原理+二分.

容斥原理介绍:http://baike.baidu.com/link?url=H0UEe3zE2jUT7Ree_tycNyXcLYRWH4v25KpCZ3DOcx2HN0jaMYB3rJNF45SFs_EDxWo01C0LCz1rrh-_CG4On_

n/p表示1~n中是p倍数的数的个数。求1~m中与n互素的数的个数。先将n进行质因数分解,然后通过位运算枚举所有质因数的组合。若选了奇数个质因数ans+=m/质因数之积,否则ans-=m/质因数之积。然后二分枚举m的范围,确定k.

#include <cstdio>
#include <vector>
using namespace std;
typedef long long LL;
LL sieve(LL n,LL m)
{
vector<LL> divisor;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
divisor.push_back(i);
while(n%i==) n/=i;
}
}
if(n>) divisor.push_back(n);
LL ans=;
for(LL mark=;mark<(<<divisor.size());mark++)
{
LL mul=;
LL odd=;
for(LL i=;i<divisor.size();i++)
{
if(mark&(<<i))
{
odd++;
mul*=divisor[i];
}
}
LL cnt=m/mul;
if(odd&) ans+=cnt;
else ans-=cnt;
}
return m-ans;
}
LL n,k;
int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL left=;
LL right=1LL<<;
while(right-left>)
{
LL mid=(left+right)>>;
LL cnt=sieve(n,mid);
if(cnt>=k)
{
right=mid;
}
else
{
left=mid;
}
}
printf("%lld\n",right);
}
return ;
}

Java版:

import java.util.Scanner;
import java.util.ArrayList;
public class Main{
Scanner in = new Scanner(System.in);
long m, k;
long sieve(long n, long m)
{
ArrayList<Long> divisor = new ArrayList();
for(long i = ; i * i <= n; i++)
{
if(n % i == )
{
divisor.add(i);
while(n % i == ) n /= i;
}
}
if(n > ) divisor.add(n);
long ret = ;
for(long mark = , size = divisor.size(); mark < ( << size); mark++)
{
long odd = ;
long mul = ;
for(int i = ; i < size; i++)
{
if((mark & (1L << i)) != )
{
odd++;
mul *= divisor.get(i);
}
}
if(odd % == )
{
ret += m / mul;
}
else
{
ret -= m / mul;
}
}
return m - ret;
}
Main()
{
while(in.hasNext())
{
m = in.nextLong();
k = in.nextLong();
long left = , right = 1L << ;
while(right > left)
{
long mid = (right + left) >> ;
long s = sieve(m, mid);
if(s >= k)
{
right = mid;
}
else
{
left = mid + ;
}
}
System.out.println(right);
}
}
public static void main(String[] args){ new Main();
}
}

POJ2773(容斥原理)的更多相关文章

  1. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  2. POJ2773 Happy 2006【容斥原理】

    题目链接: http://poj.org/problem?id=2773 题目大意: 给你两个整数N和K.找到第k个与N互素的数(互素的数从小到大排列).当中 (1 <= m <= 100 ...

  3. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  4. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  8. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  9. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

随机推荐

  1. leetcode刷题1:两数之和two_sum

    题目:(难度:Easy) 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, ...

  2. 【简单dp】poj 1458 最长公共子序列【O(n^2)】【模板】

    最长公共子序列可以用在下面的问题时:给你一个字符串,请问最少还需要添加多少个字符就可以让它编程一个回文串? 解法:ans=strlen(原串)-LCS(原串,反串); Sample Input abc ...

  3. HDU 3466 Proud Merchants 排序 背包

    题意:物品有三个属性,价格p,解锁钱数下线q(手中余额>=q才有机会购买该商品),价值v.钱数为m,问购买到物品价值和最大. 思路:首先是个01背包问题,但购买物品受限所以应先排序.考虑相邻两个 ...

  4. centos安装zabbix监控服务器端

    首先安装zabbx 依赖yum install net-snmp-devel libxml2-devel libcurl-devel -y 下载zabbix 源码包wget https://ncu.d ...

  5. 初识Spring security-添加security

    请先查看 初识Spring security-无Security的SpringMVC 在pom.xml文件中添加包 <!-- Spring Security --> <depende ...

  6. 互联网高并发之Hystrix实现服务隔离和降级

    当大多数人在使用Tomcat时,多个HTTP服务会共享一个线程池,假设其中一个HTTP服务访问的数据库响应非常慢,这将造成服务响应时间延迟增加,大多数线程阻塞等待数据响应返回,导致整个Tomcat线程 ...

  7. review29

    数组流 流的源和目的地除了可以是文件外,还可以是计算机内存. 1.字节数组流 字节数组输入流ByteArrayInputStream和字节数组输出流ByteArrayOutputStream分别使用字 ...

  8. ubuntu上安装nodejs

    目录: 1. nodejs的下载 2. 解压和安装 3. 安装过程中出现过的问题 4. 总结 1. nodejs的下载 我刚开始没有linux系统,于是安装了nodejs的windows版本进行学习. ...

  9. [Kafka] - Kafka内核理解:分布式机制

    一个Topic中的所有数据分布式的存储在kafka集群的所有机器(broker)上,以分区(partition)的的形式进行数据存储:每个分区允许存在备份数据/备份分区(存储在同一kafka集群的其它 ...

  10. Excel 导入到处问题处理!

    1.未在本地计算机上注册"Microsoft.Jet.OLEDB.4.0" 因为没有安装64位的Jet40驱动.可以到 http://www.microsoft.com/downl ...