Happy 2006
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11458   Accepted: 4001

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5
思路:若a与m互素,那么a+t*m(t>=1)与m 也互素,否则不互素.设小于m且与m互素的数有n个,分别为a(0),a(1),a(2),...,a(n-1).那么第n+1个为a0+m,第n+2个为a(1)+m...第k个为m*(k-1)+a((k-1)%n);
#include <cstdio>
using namespace std;
const int MAXN=;
int m,k;
int relative[MAXN],top;
int gcd(int a,int b)
{
if(b==) return a;
else return gcd(b,a%b);
}
void sieve()
{
for(int i=;i<=m;i++)
{
if(gcd(i,m)==)
{
relative[top++]=i;
}
}
}
int main()
{
while(scanf("%d%d",&m,&k)!=EOF)
{
top=;
sieve();
int n=(k-)/top;
int z=(k-)%top;
int res=n*m+relative[z];
printf("%d\n",res);
}
return ;
}

容斥原理+二分.

容斥原理介绍:http://baike.baidu.com/link?url=H0UEe3zE2jUT7Ree_tycNyXcLYRWH4v25KpCZ3DOcx2HN0jaMYB3rJNF45SFs_EDxWo01C0LCz1rrh-_CG4On_

n/p表示1~n中是p倍数的数的个数。求1~m中与n互素的数的个数。先将n进行质因数分解,然后通过位运算枚举所有质因数的组合。若选了奇数个质因数ans+=m/质因数之积,否则ans-=m/质因数之积。然后二分枚举m的范围,确定k.

#include <cstdio>
#include <vector>
using namespace std;
typedef long long LL;
LL sieve(LL n,LL m)
{
vector<LL> divisor;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
divisor.push_back(i);
while(n%i==) n/=i;
}
}
if(n>) divisor.push_back(n);
LL ans=;
for(LL mark=;mark<(<<divisor.size());mark++)
{
LL mul=;
LL odd=;
for(LL i=;i<divisor.size();i++)
{
if(mark&(<<i))
{
odd++;
mul*=divisor[i];
}
}
LL cnt=m/mul;
if(odd&) ans+=cnt;
else ans-=cnt;
}
return m-ans;
}
LL n,k;
int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL left=;
LL right=1LL<<;
while(right-left>)
{
LL mid=(left+right)>>;
LL cnt=sieve(n,mid);
if(cnt>=k)
{
right=mid;
}
else
{
left=mid;
}
}
printf("%lld\n",right);
}
return ;
}

Java版:

import java.util.Scanner;
import java.util.ArrayList;
public class Main{
Scanner in = new Scanner(System.in);
long m, k;
long sieve(long n, long m)
{
ArrayList<Long> divisor = new ArrayList();
for(long i = ; i * i <= n; i++)
{
if(n % i == )
{
divisor.add(i);
while(n % i == ) n /= i;
}
}
if(n > ) divisor.add(n);
long ret = ;
for(long mark = , size = divisor.size(); mark < ( << size); mark++)
{
long odd = ;
long mul = ;
for(int i = ; i < size; i++)
{
if((mark & (1L << i)) != )
{
odd++;
mul *= divisor.get(i);
}
}
if(odd % == )
{
ret += m / mul;
}
else
{
ret -= m / mul;
}
}
return m - ret;
}
Main()
{
while(in.hasNext())
{
m = in.nextLong();
k = in.nextLong();
long left = , right = 1L << ;
while(right > left)
{
long mid = (right + left) >> ;
long s = sieve(m, mid);
if(s >= k)
{
right = mid;
}
else
{
left = mid + ;
}
}
System.out.println(right);
}
}
public static void main(String[] args){ new Main();
}
}

POJ2773(容斥原理)的更多相关文章

  1. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  2. POJ2773 Happy 2006【容斥原理】

    题目链接: http://poj.org/problem?id=2773 题目大意: 给你两个整数N和K.找到第k个与N互素的数(互素的数从小到大排列).当中 (1 <= m <= 100 ...

  3. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  4. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  8. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  9. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

随机推荐

  1. Go goroutine (协程)

    在Go语言中goroutine是一个协程,但是跟Python里面的协程有很大的不同: 在任何函数前只需要加上go关键字就可以定义为协程; 不需要在定义时区分是否是异步函数  VS  async def ...

  2. 吴恩达深度学习笔记(十二)—— Batch Normalization

        主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...

  3. Linux 配置 SSL 证书

    完整的 SSL 证书分为四个部分: CA 根证书 (root CA) 中级证书 (Intermediate Certificate) 域名证书 证书密钥 (仅由您持有) 以 COMODO Positi ...

  4. Elasticsearch6.4.3安装

    Linux内存一定要1g以上! 首先要有jdk环境 要求1.8版本以上   elasticsearch是Java写的 将上传的 elasticSearch安装包解压 cd /home/elastics ...

  5. PHP开发框架

    利用PHP开发框架可以帮助你编写干净和可重用的代码.PHP开发框架遵循MVC设计模式,以确保能够明确区分逻辑和演示文稿.但是有关PHP框架的争论也不少,这是因为有的人喜欢性能,有的人喜欢文档,而有的人 ...

  6. 【P3572】little bird(单调队列+DP)

    一眼看上去这个题就要DP,可是应该怎么DP呢,我们发现,数据范围最多支持O(NlogN),但是这种DP貌似不怎么有,所以应该是O(N)算法,自然想到单调队列优化DP. 然后我们先考虑如果不用单调队列应 ...

  7. springboot - web项目

    一:使用Thymeleaf:参考http://blog.csdn.net/u012702547/article/details/53784992#t0 1.1 引入相应的包 1.2  thymelea ...

  8. 防域名DNS劫持 从保护帐号安全做起

    什么攻击能造成区域性的网络瘫痪?没错,DNS劫持.这个堪称核武器的攻击方式,一旦爆炸,后果不堪设想.2014年1月21日,全国大范围出现DNS故障,下午,中国顶级域名根服务器出现故障,大部分网站受影响 ...

  9. JS实现选项卡切换效果

    1.在网页制作过程中,我们经常会用到选项卡切换效果,它能够让我们的网页在交互和布局上都能得到提升 原理:在布局好选项卡的HTML结构后,我们可以看的出来,选项卡实际上是三个选项卡标头和三个对应的版块, ...

  10. 修改SpringBoot 默认的小叶子图标

    Springboot 项目,在浏览器中访问时,浏览器上导航栏的图标是一片绿色的叶子,我们可以修改它. 将格式为.ico的图片放入以下任一项目文件夹即可.但,图片命名必须为favicon.ico 1.类 ...