Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 858    Accepted Submission(s): 275

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input
4 4
4 4 10 7
2 13 9 11
5 7 8 20
13 20 8 2
4
1 1 4 4
1 1 3 3
1 3 3 4
1 1 1 1
 
Sample Output
20 no
13 no
20 yes
4 yes
 
Source
 
Recommend
gaojie
 
题目大意:求矩阵子矩阵的最大值
题解:二维RMQ
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#define maxn 309
using namespace std; int n,m,dp[maxn][maxn][][],map[maxn][maxn];
int x,y,xx,yy,q; void RMQ_pre(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j][][]=map[i][j];
int mx=log(double(n))/log(2.0);
int my=log(double(m))/log(2.0);
for(int i=;i<=mx;i++){
for(int j=;j<=my;j++){
if(i==&&j==)continue;
for(int row=;row+(<<i)-<=n;row++){
for(int col=;col+(<<j)-<=m;col++){
if(i==)
dp[row][col][i][j]=max(dp[row][col][i][j-],dp[row][col+(<<(j-))][i][j-]);
else
dp[row][col][i][j]=max(dp[row][col][i-][j],dp[row+(<<(i-))][col][i-][j]);
}
}
}
}
} int RMQ_2D(int x,int y,int xx,int yy){
int kx=log(double(xx-x+))/log(2.0);
int ky=log(double(yy-y+))/log(2.0);
int m1=dp[x][y][kx][ky];
int m2=dp[xx-(<<kx)+][y][kx][ky];
int m3=dp[x][yy-(<<ky)+][kx][ky];
int m4=dp[xx-(<<kx)+][y-(<<ky)+][kx][ky];
return max(max(m1,m2),max(m3,m4));
} int main(){
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&map[i][j]);
RMQ_pre();
scanf("%d",&q);
while(q--){
scanf("%d%d%d%d",&x,&y,&xx,&yy);
int ans=RMQ_2D(x,y,xx,yy);
printf("%d ",ans);
if(ans==map[x][y]||ans==map[xx][y]||ans==map[xx][yy]||ans==map[xx][yy])
printf("yes\n");
else printf("no\n");
}
}
return ;
}
 

hdu2188 Check Corners的更多相关文章

  1. HDU2888 Check Corners

    Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 ...

  2. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  3. Hdu 2888 Check Corners (二维RMQ (ST))

    题目链接: Hdu 2888 Check Corners 题目描述: 给出一个n*m的矩阵,问以(r1,c1)为左上角,(r2,c2)为右下角的子矩阵中最大的元素值是否为子矩阵的顶点? 解题思路: 二 ...

  4. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  5. HDU-2888 Check Corners 二维RMQ

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题.解题思路如下(转载别人写的): dp[row][col][i][j] 表示[row,ro ...

  6. 【HDOJ】2888 Check Corners

    二维RMQ. /* 2888 */ #include <iostream> #include <algorithm> #include <cstdio> #incl ...

  7. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  8. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  9. Check Corners HDU - 2888(二维RMQ)

    就是板题.. 查询子矩阵中最大的元素...然后看看是不是四个角落的  是就是yes  不是就是no  判断一下就好了 #include <iostream> #include <cs ...

随机推荐

  1. FreeRtos堆栈检测应用

    Free rtos每个任务都有自己的栈空间,每个任务需要的栈大小也是不同的.如果堆栈过小就会造成栈溢出,有时候栈溢出发生在某种特定顺序的任务切换中,比较难检测出.所以前期测试和监控任务栈用量就显得尤其 ...

  2. 跨平台移动开发 Xuijs超轻量级的框架 Dom与Event简洁代码实现文本展开收起

    Dom与Event简洁代码实现文本展开收起 Xuijs超轻量级的框架 Dom与Event实现文本展开收起 效果图 示例代码 <!DOCTYPE html PUBLIC "-//W3C/ ...

  3. centos 下安装python3.6.2

    具体详情: http://www.cnblogs.com/vurtne-lu/p/7068521.html

  4. Android系统--输入系统(三)必备Linux知识_双向通信(scoketpair)

    Android系统--输入系统(三)必备Linux知识_双向通信(scoketpair) 引入 1. 进程和APP通信 创建进程 读取.分发 - 进程发送输入事件给APP 进程读取APP回应的事件 输 ...

  5. linux 安装jdk1.7 环境

    由于各Linux开发厂商的不同,因此不同开发厂商的Linux版本操作细节也不一样,今天就来说一下CentOS下JDK的安装: 方法一:手动解压JDK的压缩包,然后设置环境变量 1.在/usr/目录下创 ...

  6. linux下bwa和samtools的安装与使用

    bwa的安装流程安装本软体总共需要完成以下两个软体的安装工作:1) BWA2) Samtools 1.BWA的安装a.下载BWA (download from BWA Source Forge ) h ...

  7. 生成一个ipa的包,使非开发机也能安装成功 (Xcode5.1)

    for example: 想为com.apple.cloud的bundle identifier生成一个非开发机也能安装的ipa包.你需要一个apple的企业账号(apple有两种账号:开发者账号和企 ...

  8. windows系统JDK的安装及环境配置

    本文转载至:http://blog.csdn.net/sweetburden2011/article/details/8881181 一:JDK的安装 1.   首先上甲骨文公司的官方网站下载JDK的 ...

  9. Keystone集成LDAP

    转自 http://wsfdl.com/openstack/2016/01/13/Keystone%E9%9B%86%E6%88%90LDAP.html 得益于 Keystone 优良的架构,它允许 ...

  10. (四) tensorflow笔记:常用函数说明

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...