核方法(Kernel Methods)
核方法(Kernel Methods)
支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面。对于非线性问题,则是通过引入核函数,对特征进行映射(通常映射后的维度会更高),在映射之后的特征空间中,样本点就变得线性可分了。
核方法的示意图如下:

上图中左边表示的是原始特征空间,在原始特征空间中,我们无法用直线(平面)来将两类点分开,但是却可以用圆来进行分割。右边表示的通过对原始样本点进行映射(从二维映射到三维)得到的新的样本点。可以看到在新的特征空间中,两类样本点可以通过一个平面分开。
核方法的应用除了在支持向量机之外,在感知机上,对应<xi,xj>的位置利用核函数代替,就有了核感知机;同理还有核聚类,核PCA等。
常用的核函数

除了上述的核函数之外,还有Sigmoid核函数,并且将核函数进行线下组合,也仍然是核函数。
核函数定义
知道了核函数的应用以及有哪些核函数之后,我们来看看,什么样的函数能作为核函数,是不是我们能自己构造核函数。
核函数一个有效的判断方式是通过Mercer定理:

简单的说就是,判断核函数K对应的Gram矩阵是否是半正定的。但是值得注意的是,Mercer定理不是核函数必要条件,只是一个充分条件,也就是说还有不满足Mercer定理的函数也可以是核函数。
参考:


核方法(Kernel Methods)的更多相关文章
- paper 6:支持向量机系列三:Kernel —— 介绍核方法,并由此将支持向量机推广到非线性的情况。
前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.不过,由于是线性方法,所以对非线性的数据就没有办法处理了.例如图中的两类数据,分别分布为两个圆圈的形状,不论 ...
- PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)
主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- SVM 核方法
在 SVM 中引入核方法便可使得 SVM 变为非线性分类器,给定非线性可分数据集 $\left \{ (x_i,y_i)\right\}_{i=1}^N$,如下图所示,此时找不到一个分类平面来将数据分 ...
- Andrew Ng机器学习笔记+Weka相关算法实现(五)SVM最优间隔和核方法
这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的 ...
- Windows内核开发-6-内核机制 Kernel Mechanisms
Windows内核开发-6-内核机制 Kernel Mechanisms 一部分Windows的内核机制对于驱动开发很有帮助,还有一部分对于内核理解和调试也很有帮助. Interrupt Reques ...
- Kernel Methods for Deep Learning
目录 引 主要内容 与深度学习的联系 实验 Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information proce ...
- 高介分类:核方法与支持向量机(SVM)
数据模型:并不是简单地二维数据,多个维度或者对象的数据聚合起来 { persion1's attr1:value1,...,persion1's attrN:va ...
随机推荐
- CodeForces - 598C Nearest vectors(高精度几何 排序然后枚举)
传送门: http://codeforces.com/problemset/problem/598/C Nearest vectors time limit per test 2 seconds me ...
- HDU 1258 Sum It Up(dfs 巧妙去重)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...
- Angularjs实例应用
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- 2017-09-26 发布 SpringBoot多模块项目实践(Multi-Module)
https://segmentfault.com/a/1190000011367492?utm_source=tag-newest 2017-09-26 发布 SpringBoot多模块项目实践(Mu ...
- 技巧:Vimdiff 使用
技巧:Vimdiff 使用 各种 IDE 大行其道的同时,传统的命令行工具以其短小精悍,随手可得的特点仍有很大的生存空间,这篇短文介绍了一个文本比较和合并的小工具:vimdiff.希望能对在 Unix ...
- 【TOJ 4475】The Coolest Sub-matrix(对角线前缀和)
描述 Given an N*N matrix, find the coolest square sub-matrix.We define the cool value of the square ma ...
- springboot的aop编程
以下内容是模仿杨开振<<深入浅出springboot 2.x>>的4.2章节内容. 开始前,需要先修改pom.xml,加入以下内容 <!-- https://mvnrep ...
- Apache和Nignx基于三种方式搭建web站点并设置用户访问控制达到优化整个站点性能
个人用户主页: 1:Vim /etc/http/con.d/userdir: UserDir disabled //个人用户主页开启 UserDir public_html //指定 ...
- YII2 不通过composer安装Ueditor编辑器
今天用composer安装Ueditor,一直下载失败,不知道为什么,所以就手动安装了一下.记录一下安装步骤 GitHub地址 https://github.com/BigKuCha/yii2-ued ...
- php 使用当前时间点进行时间范围查询
/** * 判断是否是吃早饭时间 */ $nowtime = time(); $start = strtotime('8:30:00'); $end = strtotime('9:30:00'); i ...