Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

题目大意:N个客户M个仓库K种物品。已知每个客户需要的每种物品的数量,和每个仓库拥有的每种物品的数量,和每个仓库运送每种物品到每个顾客的花费,求满足所有顾客的最小花费。

思路:由于每个物品独立,分开每个物品建图。考虑物品x,建立附加源点S,从S到每个仓库连一条边,容量为该仓库拥有物品x的数量,费用为0;从每个客户连一条边到附加汇点T,容量为每个客户需要的物品x的数量,费用为0;从每个仓库连一条边到每个客户,容量为无穷大,费用为仓库到客户运输物品x的花费。求最小费用最大流,若都满流,K个物品相加就是答案。若有一个流不满,则输出-1(不能满足顾客需求)。

PS:记得读完数据。

PS2:再次提出稠密图应该用ZKW费用流。

PS3:ZKW费用流写挫了WA了一次,这玩意儿好难写……

代码(266MS):

 #include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXV = ;
const int MAXE = MAXV * MAXV;
const int INF = 0x7fffffff; struct ZEK_FLOW {
int head[MAXV], dis[MAXV];
int next[MAXE], to[MAXE], cap[MAXE], cost[MAXE];
int n, ecnt, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c, int w) {
to[ecnt] = v; cap[ecnt] = c; cost[ecnt] = w; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = ; cost[ecnt] = -w; next[ecnt] = head[v]; head[v] = ecnt++;
} void SPFA() {
for(int i = ; i <= n; ++i) dis[i] = INF;
priority_queue<pair<int, int> > que;
dis[st] = ; que.push(make_pair(, st));
while(!que.empty()) {
int u = que.top().second, d = -que.top().first; que.pop();
if(d != dis[u]) continue;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] && dis[v] > d + cost[p]) {
dis[v] = d + cost[p];
que.push(make_pair(-dis[v], v));
}
}
}
int t = dis[ed];
for(int i = ; i <= n; ++i) dis[i] = t - dis[i];
} int minCost, maxFlow;
bool vis[MAXV]; int add_flow(int u, int aug) {
if(u == ed) {
maxFlow += aug;
minCost += dis[st] * aug;
return aug;
}
vis[u] = true;
int now = aug;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] && !vis[v] && dis[u] == dis[v] + cost[p]) {
int t = add_flow(v, min(now, cap[p]));
cap[p] -= t;
cap[p ^ ] += t;
now -= t;
if(!now) break;
}
}
return aug - now;
} bool modify_label() {
int d = INF;
for(int u = ; u <= n; ++u) if(vis[u]) {
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] && !vis[v]) d = min(d, dis[v] + cost[p] - dis[u]);
}
}
if(d == INF) return false;
for(int i = ; i <= n; ++i) if(vis[i]) dis[i] += d;
return true;
} int min_cost_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
minCost = maxFlow = ;
SPFA();
while(true) {
while(true) {
for(int i = ; i <= n; ++i) vis[i] = ;
if(!add_flow(st, INF)) break;
}
if(!modify_label()) break;
}
return minCost;
}
} G; int n, m, k;
int need[MAXV][MAXV], have[MAXV][MAXV], sum[MAXV];
int mat[MAXV][MAXV]; int main() {
while(scanf("%d%d%d", &n, &m, &k) != EOF) {
if(n == && m == && k == ) break;
memset(sum, , sizeof(sum));
for(int i = ; i <= n; ++i)
for(int j = ; j <= k; ++j) scanf("%d", &need[i][j]), sum[j] += need[i][j];
for(int i = ; i <= m; ++i)
for(int j = ; j <= k; ++j) scanf("%d", &have[i][j]);
int ans = ; bool flag = true;
for(int x = ; x <= k; ++x) {
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &mat[i][j]);
if(!flag) continue;
G.init();
int ss = n + m + , tt = ss + ;
for(int i = ; i <= m; ++i) G.add_edge(ss, i, have[i][x], );
for(int i = ; i <= n; ++i) G.add_edge(i + m, tt, need[i][x], );
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) G.add_edge(j, i + m, INF, mat[i][j]);
ans += G.min_cost_flow(ss, tt, tt);
flag = (G.maxFlow == sum[x]);
}
if(flag) printf("%d\n", ans);
else puts("-1");
}
}

POJ 2516 Minimum Cost(最小费用流)的更多相关文章

  1. POJ 2516 Minimum Cost 最小费用流 难度:1

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 13511   Accepted: 4628 Des ...

  2. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

  3. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  4. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  5. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  6. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

  7. POJ - 2516 Minimum Cost 每次要跑K次费用流

    传送门:poj.org/problem?id=2516 题意: 有m个仓库,n个买家,k个商品,每个仓库运送不同商品到不同买家的路费是不同的.问为了满足不同买家的订单的最小的花费. 思路: 设立一个源 ...

  8. POJ 2516 Minimum Cost(拆点+KM完备匹配)

    题目链接:http://poj.org/problem?id=2516 题目大意: 第一行是N,M,K 接下来N行:第i行有K个数字表示第i个卖场对K种商品的需求情况 接下来M行:第j行有K个数字表示 ...

  9. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

随机推荐

  1. jmeter 填写URL链接后 不能有多余的空格。

  2. 你不知道的javaScript笔记(4)

    类型: JavaScript 有7种内置类型 空值 (null) 未定义(undefined) 布尔值(boolean) 数字(number) 字符串(string) 对象(object) 符号(sy ...

  3. solr6.6教程-core的添加(二)

    1.什么是core core是solr的一个索引库,可以理解为一个数据库,core可以根据需要,创建多个. 2.创建core 首先进入到solrhome文件夹(D:\solrhome),创建一个文件夹 ...

  4. windows下上传shell脚本不能运行—将dos模式修改为unix 文件格式

    windows下上传shell脚本至linux,其格式将为dos.dos模式的shell脚本将不能再linux下正确运行,需要修改文件模式为unix. 1 查看文件模式方法 linux服务器上,用vi ...

  5. 深度解析JQuery Dom元素操作技巧

    深度解析JQuery Dom元素操作技巧 DOM是一种与浏览器.平台.语言无关的接口,使用该接口可以轻松访问页面中所有的标准组件,这篇文章给大家介绍了JQuery dom元素操作方法,写的十分的全面细 ...

  6. Java : JPA相关以及常用注解

    SpringDataJPA自定义的查询方法 定义规范       And 并且 Or 或     Is,Equals 等于 Between 两者之间 LessThan 小于 LessThanEqual ...

  7. hive 学习系列五(hive 和elasticsearch 的交互,很详细哦,我又来吹liubi了)

    hive 操作elasticsearch 一,从hive 表格向elasticsearch 导入数据 1,首先,创建elasticsearch 索引,索引如下 curl -XPUT '10.81.17 ...

  8. python 装饰器 (多个装饰器装饰一个函数---装饰器前套一个函数)

    #带参数的装饰器 #500个函数 # import time # FLAGE = False # def timmer_out(flag): # def timmer(func): # def inn ...

  9. 人人都会设计模式:观察者模式--Observer

    https://segmentfault.com/a/1190000012295887 观察者模式是抽像通知者和观察者,达到具体通知者跟具体观察者没有偶合.能达到不管是切换通知者,或者是切换观察者,都 ...

  10. 004---基于TCP的套接字

    基于TCP的套接字 tcp是基于链接的,必须先启动服务端,然后再启动客户端去连接服务端. 之前实现的简单套接字就是基于TCP的,但是只能实现收发消息一次.服务器与客户端都断开了.不够过瘾. 通信循环版 ...