将测试样本进行排序,“最可能”是正例的排在最前面,“最不可能”是正例的排在最后面。

分类过程就相当于在这个排序中以某个“截断点”(见图中阈值)将样本分为两部分,前一部分判作正例,后一部分判作反例。

我们根据学习器的预测结果对样例进行排序,按此顺序把逐个样本作为正例进行预测,每次计算出FPR, TPR,分别为横纵坐标作图,可得“ROC曲线”。

TPR 与 FPR

P表示“正”的,为预测为“好的”,即要从总体中挑出来的。

真正例率 TPR = TP / (TP + TN)

表示,被挑出来的(预测是“正”的),且正确的(预测值=真实值)的,占总的预测正确的比率。

反正例率 FPR = FP / (FP + TN)

表示,被挑出来的(预测是“正”的),但错误的(预测值!=真实值)的,占总的预测错误的比率。

TPR越大,则表示挑出的越有可能(是正确的);FPR越大,则表示越不可能(在挑选过程中,再挑新的出来,即再挑认为是正确的出来,越有可能挑的是错误的)。

TPR 与 FPR 呈反相关,随着采样的继续(见上文:“按此顺序把逐个样本作为正例进行预测,每次计算出FPR, TPR”),越不可能是正例的被采样出来,TPR降低,FPR升高。

对TPR(真正例率) 与 FPR(反正例率)的理解的更多相关文章

  1. 互联网中一些常用指标(PV、UV、蹦失率、转换率、退出率)

    1) PV:PageView  页面点击量,每次刷新就算一次浏览,多次打开同一页面会累加. 通常是衡量网站的主要指标. 2)UV:Unique  Visitor一天内访问网站的人数(是以cookie为 ...

  2. 语音识别ASR - HTK(HResults)计算字错率WER、句错率SER

    HResults计算字错率(WER).句错率(SER) 前言 好久没发文,看到仍有这么多关注的小伙伴,觉得不发篇文对不住.确实好久没有输出经验总结相关的文档,抽了个时间,整理了下笔记,发一篇关于ASR ...

  3. 精确率、准确率、召回率和F1值

    当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...

  4. ASR测试方法---字错率(WER)、句错率(SER)统计

    一.基础概念 1.1.语音识别(ASR) 语音识别(speech recognition)技术,也被称为自动语音识别(英语:Automatic Speech Recognition, ASR), 狭隘 ...

  5. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  6. 分段覆盖率TPR

    黑产监控中,需要尽可能做到尽可能少的误伤和尽可能准确地探测,可以选择“在FPR较低时的TPR加权平均值”作为平均指标. 根据混淆矩阵计算TPR(覆盖率)和FPR(打扰率): 覆盖率:TPR = TP ...

  7. 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy

    针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 ...

  8. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  9. [机器学习] 性能评估指标(精确率、召回率、ROC、AUC)

    混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 ...

随机推荐

  1. Android onMeasure 方法的测量规范MeasureSpec

    一个MeasureSpec封装了父布局传递给子布局的布局要求,每个MeasureSpec代表了一组宽度和高度的要求.一个MeasureSpec由大小和模式组成.它有三种模式:UNSPECIFIED(未 ...

  2. laravel5项目安装debugbar

    链接:https://github.com/barryvdh/laravel-debugbar 1.项目目录运行 composer require barryvdh/laravel-debugbar ...

  3. Asset Store 下载的package存在什么地方?

    发现从Asset store下载的packages都不知道放在了什么地方 Windows 7,C:\Users\<username>\AppData\Roaming\Unity\Asset ...

  4. Es6的那些事

    现在看招聘网站上的要求,作为前端er~都要熟悉甚至精通(滑稽脸)es6,项目中也经常用,啥let,const,尤其是用react的同学,肯定对解构赋值不会陌生,今天逛淘宝前端的博客,看到一篇名为Es6 ...

  5. JavaScript中BOM的基础知识总结

    一.什么是BOM      BOM(Browser Object Model)即浏览器对象模型.      BOM提供了独立于内容 而与浏览器窗口进行交互的对象:      由于BOM主要用于管理窗口 ...

  6. 关于 'list' object has no attribute 'select'

    我是在写爬虫是遇到了这个问题: c = chapter.select('href')AttributeError: 'list' object has no attribute 'select' 这是 ...

  7. nginx: [error] open() "/var/run/nginx.pid" failed (2: No such file or directory)

    解决办法: nginx nginx -s reload

  8. stm32+lwip(四):网页服务器测试

    我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...

  9. python2.7入门---SMTP发送邮件

        SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.python的smtplib提 ...

  10. myeclipse 安装pydev插件后svn插件失效

    为了将python的IDE集成到myeclipse,按照教程安装了myeclipse插件pydev插件,但是按照完后发现,先前安装的svn不见了,解决办法如下: 1. 关闭myeclipse, 2. ...