「BZOJ 2434」「NOI 2011」阿狸的打字机「AC自动机」
题意
有一个打字机,支持三种操作:
- 字符串末尾加一个小写字母
- 字符串末尾减一个字符
- 输出这个字符串
经过不超过\(n\)次操作后有\(m\)组询问:\((x,y)\),表示第\(x\)次输出第字符串在第\(y\)次输出第字符串里出现几次
\(n,m \leq 10^5\)
题解
每次加减字符就在trie树上走,输出的话记录一下在哪个结点
然后考虑询问\((x,y)\)暴力怎么做:\(x\)应该是\(y\)一个前缀的后缀,于是我们对于从根到\(y\)路径上每个结点(这相当于枚举\(y\)的后缀),从这个结点跳\(fail\),如果跳到\(x\)就\(ans++\),然后考虑下一个结点
实际上我们要求的就是根到\(y\)这条链上的结点中,在\(fail\)树中是\(x\)儿子的个数
我们可以按\(\text{trie}\)树的\(\text{dfs}\)序枚举\(y\),这样枚举所有的链和信息是\(O(n)\)的,每个点只会被加入一次和删除一次。然后考虑回答所有\((i,y)\)的询问,直接询问当前在\(x\)的\(fail\)树子树的结点个数。可以使用树状数组维护。具体说就是把询问按\(y\)在\(trie\)上的\(\text{dfs}\)序排序,然后每个点必须插入到它\(fail\)树\(\text{dfs}\)序的位置,查询就找到\(x\)的\(fail\)子树的\(\text{dfs}\)区间进行查询。
实现的话注意\(trie\)和\(fail\)不要搞混了,另外这题可以用主席树在线做
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int N = 2e5 + 10;
int ch[N][26], fa[N], fail[N];
int dfn[N], dl[N], dr[N], dn[N];
int pos = 1, id = 1, n, pt[N], ans[N];
vector<int> fs[N];
struct qs {
int x, y, id;
bool operator < (const qs &b) const {
return dfn[y] < dfn[b.y];
}
} q[N];
void work(char c) {
if(c == 'B') pos = fa[pos];
else if(c == 'P') pt[++ pt[0]] = pos;
else {
int &v = ch[pos][c - 'a'];
if(!v) {
v = ++ id;
fa[v] = pos;
}
pos = v;
}
}
void dfs(int u) { //on trie
dfn[u] = ++ dfn[0]; dn[dfn[0]] = u;
for(int i = 0; i < 26; i ++)
if(ch[u][i]) dfs(ch[u][i]);
}
void buildac() {
static int q[N], l, r, v;
for(int i = 0; i < 26; i ++) if(v = ch[1][i]) {
q[r ++] = v; fail[v] = 1;
} else ch[1][i] = 1;
while(l < r) {
int u = q[l ++];
for(int i = 0; i < 26; i ++) if(v = ch[u][i]) {
q[r ++] = v; fail[v] = ch[fail[u]][i];
} else ch[u][i] = ch[fail[u]][i];
}
for(int i = 2; i <= id; i ++)
fs[fail[i]].push_back(i);
}
void dfs2(int u) { //on fail tree
dl[u] = ++ dl[0];
for(int i = 0; i < fs[u].size(); i ++) dfs2(fs[u][i]);
dr[u] = dl[0];
}
int bit[N];
void add(int x, int y) {
for(; x <= id; x += x & (-x)) bit[x] += y;
}
int qry(int x) {
int ans = 0;
for(; x >= 1; x &= x - 1) ans += bit[x];
return ans;
}
int main() {
static char s[N]; scanf("%s", s);
for(char *c = s; *c; c ++) work(*c);
dfs(1); buildac(); dfs2(1);
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%d%d", &q[i].x, &q[i].y);
q[i].x = pt[q[i].x];
q[i].y = pt[q[i].y]; //id -> node
q[i].id = i;
}
sort(q + 1, q + n + 1);
for(int i = 1, j = 1; i <= id; i ++) {
int u = dn[i];
if(i > 1) {
int la = dn[i - 1];
while(la != fa[u]) {
add(dl[la], -1);
la = fa[la];
}
}
add(dl[u], 1);
for(; j <= n && dfn[q[j].y] == i; j ++) {
ans[q[j].id] = qry(dr[q[j].x]) - qry(dl[q[j].x] - 1);
}
}
for(int i = 1; i <= n; i ++)
printf("%d\n", ans[i]);
return 0;
}
「BZOJ 2434」「NOI 2011」阿狸的打字机「AC自动机」的更多相关文章
- 【BZOJ 2434】【NOI 2011】阿狸的打字机 fail树
完全不会啊,看题解还看了好久,我是蒟蒻$QAQ$ $zyf$的题解挺好的:http://blog.csdn.net/clove_unique/article/details/51059425 $fai ...
- BZOJ 2434 [Noi2011]阿狸的打字机(AC自动机)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2434 [题目大意] 给出一个打印的过程,'a'-'z'表示输入字母,P表示打印该字符串 ...
- NOI 2011 阿狸的打字机(AC自动机+主席树)
题意 https://loj.ac/problem/2444 思路 多串匹配,考虑 \(\text{AC}\) 自动机.模拟打字的过程,先建出一棵 \(\text{Trie}\) 树,把它变成自动机 ...
- 【NOI 2011】阿狸的打字机
Problem Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B . P 两个字母. ...
- NOI 2011 【阿狸的打字机】
之前讲了[AC自动姬],今天我终于把这题给刚下来了...嗯,来给大家讲一讲. 题目描述: 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工 ...
- 「AC自动机」学习笔记
AC自动机(Aho-Corasick Automaton),虽然不能够帮你自动AC,但是真的还是非常神奇的一个数据结构.AC自动机用来处理多模式串匹配问题,可以看做是KMP(单模式串匹配问题)的升级版 ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
随机推荐
- oracle创建表空间、创建用户
create user user_name identified by user_name create temporary tablespace user_name_temp tempfile '/ ...
- JS||JQUERY常用语法
cookieEnabled属性语法 通常可以在浏览器的临时文件夹中保存一个文件,此文件可以包含用户信息(比如浏览过什么页面,是否选择了自动登录)等,这个文件被称作cookie,通过cookieEnab ...
- HTTP常用标准请求头字段
常用标准请求头字段 Accept 设置接受的内容类型 Accept: text/plain Accept-Charset 设置接受的字符编码 Accept-Charset: utf-8 Accept- ...
- leetcode599
public class Solution { public string[] FindRestaurant(string[] list1, string[] list2) { var dic = n ...
- oracle查询列合并为行(listagg简单用法)
今天工作时遇见一个数据查询分组问题,就是将分组后同一组数据某一列合并为一行,因为之前很少用到,这次工作中刚好有用到,所以手痒难耐,将它记录下来. 查询sql如下: select t.province_ ...
- 让IE10等支持classList2.0
chrome24+, firesfox26+起支持classList2.0,即让它同时添加或删除多个类名, toggle方法支持第2个参数,用于强制添加或删除 var div = document.c ...
- Android Architecture Components
https://developer.android.com/topic/libraries/architecture/index.html ViewModel 有LiveData Activity 监 ...
- Tarjan的LCA离线算法
LCA(Least Common Ancestors)是指树结构中两个结点的最低的公共祖先.而LCA算法则是用于求两个结点的LCA.当只需要求一对结点的LCA时,我们很容易可以利用递归算法在O(n)的 ...
- 制作第三方SDK静态库、.framework(修正)
静态库和动态库的存在形式 静态库: .a 和 .framework 动态库: .dylib 和 .framework 静态库和动态库的使用区别: 静态库:链接时,静态库会被完整地复制 到 可执行文件中 ...
- c语言学习笔记-if语句块一定要加分号
if(a>6) printf("hello");//语句1 printf("world");//语句2 当a>6的时候,执行的分支语句是语句1,而不 ...