二叉树 / Binary Tree


二叉树是树结构的一种,但二叉树的每一个节点都最多只能有两个子节点。

Binary Tree:
00
|_____
| |
00 00
|__ |__
| | | |
00 00 00 00

对于二叉树的遍历,主要有以下三种基本遍历方式:

  1. 先序遍历:先显示节点值,再显示左子树和右子树
  2. 中序遍历:先显示左子树,再显示节点值和右子树
  3. 后序遍历:先显示左子树和右子树,再显示节点值

下面将用代码构建一个二叉树,并实现三种遍历方式,

完整代码

 class TreeNode:
def __init__(self, val=None, lef=None, rgt=None):
self.value = val
self.left = lef
self.right = rgt def __str__(self):
return str(self.value) class BinaryTree:
"""
Binary Tree:
00
|_____
| |
00 00
|__ |__
| | | |
00 00 00 00
"""
def __init__(self, root=None):
self._root = root def __str__(self):
return '\n'.join(map(lambda x: x[1]*4*' '+str(x[0]), self.pre_traversal())) def pre_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
x.append((node, depth))
if node and node.left is not None:
_traversal(node.left)
if node and node.right is not None:
_traversal(node.right)
depth -= 1
return x
return _traversal(root) def in_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
if node and node.left is not None:
_traversal(node.left)
x.append((node, depth))
if node and node.right is not None:
_traversal(node.right)
depth -= 1
return x
return _traversal(root) def post_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
if node and node.left is not None:
_traversal(node.left)
if node and node.right is not None:
_traversal(node.right)
x.append((node, depth))
depth -= 1
return x
return _traversal(root) @property
def max_depth(self):
return sorted(self.pre_traversal(), key=lambda x: x[1])[-1][1] def show(self, tl=None):
if not tl:
tl = self.pre_traversal()
print('\n'.join(map(lambda x: x[1]*4*' '+str(x[0]), tl))) def make_empty(self):
self.__init__() def insert(self, item):
if self._root is None:
self._root = TreeNode(item)
return def _insert(item, node):
if not node:
return TreeNode(item)
if node.left is None:
node.left = _insert(item, node.left)
elif node.right is None:
node.right = _insert(item, node.right)
else:
if len(self.pre_traversal(node.left)) <= len(self.pre_traversal(node.right)):
node.left = _insert(item, node.left)
else:
node.right = _insert(item, node.right)
return node
self._root = _insert(item, self._root) if __name__ == '__main__':
bt = BinaryTree()
print('\nBinary Tree:')
'''
0
|_____
| |
1 2
|__ |__
| | | |
3 5 4 6
'''
for i in range(7):
bt.insert(i)
bt.show()
print('\n------Pre-traversal-------')
print(bt) print('\n------Post-traversal------')
bt.show(bt.post_traversal())
print('\n-------In-traversal-------')
bt.show(bt.in_traversal()) bt.make_empty()
print('\n-------Empty-tree-------')
print(bt)

分段解释

首先定义树节点,包含3个属性(指针引用),分别为:当前值,左子树节点,右子树节点

 class TreeNode:
def __init__(self, val=None, lef=None, rgt=None):
self.value = val
self.left = lef
self.right = rgt def __str__(self):
return str(self.value)

构建一个二叉树类,构造函数中包含一个根节点属性,

 class BinaryTree:
"""
Binary Tree:
00
|_____
| |
00 00
|__ |__
| | | |
00 00 00 00
"""
def __init__(self, root=None):
self._root = root

重定义__str__方法,在打印树时,依据树的深度添加tab显示,类似于文件目录(文件分级目录原本便是由树实现的)的显示方式

     def __str__(self):
return '\n'.join(map(lambda x: x[1]*4*' '+str(x[0]), self.pre_traversal()))

定义先序遍历方法,通过递归的方式进行实现,优先显示当前节点

     def pre_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
x.append((node, depth))
if node and node.left is not None:
_traversal(node.left)
if node and node.right is not None:
_traversal(node.right)
depth -= 1
return x
return _traversal(root)

定义中序遍历方法,与先序遍历基本相同,只是处理当前节点的顺序在左子树之后,右子树之前,

     def in_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
if node and node.left is not None:
_traversal(node.left)
x.append((node, depth))
if node and node.right is not None:
_traversal(node.right)
depth -= 1
return x
return _traversal(root)

定义后序遍历方法,处理当前节点的顺序在左子树和右子树之后,

     def post_traversal(self, root=None):
if not root:
root = self._root
x = []
depth = -1 def _traversal(node):
nonlocal depth
depth += 1
if node and node.left is not None:
_traversal(node.left)
if node and node.right is not None:
_traversal(node.right)
x.append((node, depth))
depth -= 1
return x
return _traversal(root)

再定义一些树的基本方法,显示树的时候,优先采用先序遍历显示,

     @property
def max_depth(self):
return sorted(self.pre_traversal(), key=lambda x: x[1])[-1][1] def show(self, tl=None):
if not tl:
tl = self.pre_traversal()
print('\n'.join(map(lambda x: x[1]*4*' '+str(x[0]), tl))) def make_empty(self):
self.__init__()

最后定义二叉树的插入方法,插入方式尽量保证二叉树的平衡,插入顺序为当前节点->左->右,当左右节点都不为空时,则递归插入左子树和右子树中,深度较小的那一棵树。

     def insert(self, item):
if self._root is None:
self._root = TreeNode(item)
return def _insert(item, node):
if not node:
return TreeNode(item)
if node.left is None:
node.left = _insert(item, node.left)
elif node.right is None:
node.right = _insert(item, node.right)
else:
if len(self.pre_traversal(node.left)) <= len(self.pre_traversal(node.right)):
node.left = _insert(item, node.left)
else:
node.right = _insert(item, node.right)
return node
self._root = _insert(item, self._root)

定义完二叉树类后,对二叉树进行构建,插入元素并利用三种遍历方式显示二叉树。

 if __name__ == '__main__':
bt = BinaryTree()
print('\nBinary Tree:')
'''
0
|_____
| |
1 2
|__ |__
| | | |
3 5 4 6
'''
for i in range(7):
bt.insert(i)
bt.show()
print('\n------Pre-traversal-------')
print(bt) print('\n------Post-traversal------')
bt.show(bt.post_traversal())
print('\n-------In-traversal-------')
bt.show(bt.in_traversal()) bt.make_empty()
print('\n-------Empty-tree-------')
print(bt)

三种遍历方式显示结果如下

Binary Tree:
0
1
3
5
2
4
6 ------Pre-traversal-------
0
1
3
5
2
4
6 ------Post-traversal------
3
5
1
4
6
2
0 -------In-traversal-------
3
1
5
0
4
2
6 -------Empty-tree-------
None

Python与数据结构[3] -> 树/Tree[0] -> 二叉树及遍历二叉树的 Python 实现的更多相关文章

  1. Python与数据结构[3] -> 树/Tree[2] -> AVL 平衡树和树旋转的 Python 实现

    AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实 ...

  2. Python与数据结构[3] -> 树/Tree[1] -> 表达式树和查找树的 Python 实现

    表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不 ...

  3. Python与数据结构[4] -> 散列表[0] -> 散列表与散列函数的 Python 实现

    散列表 / Hash Table 散列表与散列函数 散列表是一种将关键字映射到特定数组位置的一种数据结构,而将关键字映射到0至TableSize-1过程的函数,即为散列函数. Hash Table: ...

  4. 用Python实现数据结构之树

    树 树是由根结点和若干颗子树构成的.树是由一个集合以及在该集合上定义的一种关系构成的.集合中的元素称为树的结点,所定义的关系称为父子关系.父子关系在树的结点之间建立了一个层次结构.在这种层次结构中有一 ...

  5. 数据结构(二) 树Tree

    五.树 树的定义   树的逻辑表示:树形表示法.文氏图表示法.凹入表示法.括号表示法.         结点:表示树中的元素,包括数据项及若干指向其子树的分支. 结点的度:结点拥有的子树树:树的度:一 ...

  6. LeetCode 965. 单值二叉树 (遍历二叉树)

    题目链接:https://leetcode-cn.com/problems/univalued-binary-tree/ 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树. 只有给定的树是 ...

  7. 《程序员代码面试指南》第三章 二叉树问题 遍历二叉树的神级方法 morris

    题目 遍历二叉树的神级方法 morris java代码 package com.lizhouwei.chapter3; /** * @Description:遍历二叉树的神级方法 morris * @ ...

  8. 用python讲解数据结构之树的遍历

    树的结构 树(tree)是一种抽象数据类型或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合 它具有以下的特点: ①每个节点有零个或多个子节点: ②没有父节点的节点称为根节点: ③ ...

  9. Python与数据结构[1] -> 栈/Stack[0] -> 链表栈与数组栈的 Python 实现

    栈 / Stack 目录 链表栈 数组栈 栈是一种基本的线性数据结构(先入后出FILO),在 C 语言中有链表和数组两种实现方式,下面用 Python 对这两种栈进行实现. 1 链表栈 链表栈是以单链 ...

随机推荐

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. 常见编程语言对REPL支持情况小结

    最近跟一个朋友聊起编程语言的一些特性,他有个言论让我略有所思:“不能REPL的都是渣”.当然这个观点有点偏激,但我们可以探究一下,我们常用的编程语言里面,哪些支持REPL,哪些不支持,还有REPL的一 ...

  3. Why is the ibdata1 file continuously growing in MySQL?

    We receive this question about the ibdata1 file in MySQL very often in Percona Support. The panic st ...

  4. 安卓recyclerview的基本使用

    1.先在布局文件中写 <android.support.v7.widget.RecyclerView android:id="@+id/my_recycler_view" a ...

  5. greendao的基本操作

    1.先配置项目的builder.gradle // Top-level build file where you can add configuration options common to all ...

  6. JAVASCRIPT和JSP计算闰年

    0x01:JAVASCRIPT 实现 <h1 align="left">求闰年</h1> 开始年份: <input type="text&q ...

  7. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  8. [bzoj3306]树——树上倍增+dfs序+线段树

    Brief Description 您需要写一种数据结构,支持: 更改一个点的点权 求一个子树的最小点权 换根 Algorithm Design 我们先忽略第三个要求. 看到要求子树的最小点权,我们想 ...

  9. 平衡树之splay讲解

    首先来说是splay是二叉搜索树,它可以说是线段树和SBT的综合,更可以解决一些二者解决不了的问题,splay几乎所有的操作都是由splay这一操作完成的,在介绍这一操作前我们先介绍几个概念和定义 二 ...

  10. python脚本运行的几种方式

    1.脚本式编程 将如下代码拷贝至 hello.py文件中: print ("Hello, Python!"); 通过以下命令执行该脚本: $ python ./hello.py h ...