One of the tasks students routinely carry out in their mathematics classes is to solve a polynomial equation. It is, given a polynomial, sayX2 - 4X + 1<tex2html_verbatim_mark> , to find its roots (2±)<tex2html_verbatim_mark> .

If the students' task is to find the roots of a given polynomial, the teacher's task is then to find a polynomial that has a given root. Ms. Galsone is an enthusiastic mathematics teacher who is bored with finding solutions of quadratic equations that are as simple as a + b<tex2html_verbatim_mark> . She wanted to make higher-degree equations whose solutions are a little more complicated. As usual in problems in mathematics classes, she wants to maintain all coefficients to be integers and keep the degree of the polynomial as small as possible (provided it has the specified root). Please help her by writing a program that carries out the task of the teacher's side.

You are given a number t<tex2html_verbatim_mark> of the form:

t =  + 

<tex2html_verbatim_mark>

where a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers, and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> are integers greater than 1.

In this problem, you are asked to find t<tex2html_verbatim_mark> 's minimal polynomial on integers, which is the polynomial F(X) = adXd + ad-1Xd-1 + ... a1X +a0<tex2html_verbatim_mark> satisfying the following conditions.

  1. Coefficients a0,..., ad<tex2html_verbatim_mark> are integers and ad > 0<tex2html_verbatim_mark> .
  2. F(t) = 0<tex2html_verbatim_mark> .
  3. The degree d<tex2html_verbatim_mark> is minimum among polynomials satisfying the above two conditions.
  4. F(X)<tex2html_verbatim_mark> is primitive. That is, coefficients a0,..., ad<tex2html_verbatim_mark> have no common divisors greater than one.

For example, the minimal polynomial of  + <tex2html_verbatim_mark> on integers is F(X) = X4 -10X2 + 1<tex2html_verbatim_mark> . Verifying F(t) = 0<tex2html_verbatim_mark> is as simple as the following ( = , = <tex2html_verbatim_mark> ).

F(t) = ( + )4 -10( + )2 + 1
  = ( +4 +6 +4 + ) - 10( +2 + ) + 1
  = 9 + 12 +36 + 8 +4 - 10(3 + 2 + 2) + 1
  = (9 + 36 + 4 - 50 + 1) + (12 + 8 - 20)
  = 0

<tex2html_verbatim_mark>

Verifying that the degree of F(t)<tex2html_verbatim_mark> is in fact minimum is a bit more difficult. Fortunately, under the condition given in this problem, which is that a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> greater than one, the degree of the minimal polynomial is always mn<tex2html_verbatim_mark> . Moreover, it is always monic. That is, the coefficient of its highest-order term ( ad<tex2html_verbatim_mark> ) is one.

Input

The input consists of multiple datasets, each in the following format.

a  m  b  n

<tex2html_verbatim_mark>

This line represents  + <tex2html_verbatim_mark> . The last dataset is followed by a single line consisting of four zeros. Numbers in a single line are separated by a single space.

Every dataset satisfies the following conditions.

  1.  + 4<tex2html_verbatim_mark>
  2. mn20<tex2html_verbatim_mark>
  3. The coefficients of the answer a0,..., ad<tex2html_verbatim_mark> are between (- 231 + 1)<tex2html_verbatim_mark> and (231 - 1)<tex2html_verbatim_mark> , inclusive.

Output

For each dataset, output the coefficients of its minimal polynomial on integers F(X) = adXd + ad-1Xd-1 + ... a1X + a0<tex2html_verbatim_mark> , in the following format.

ad  ad-1 ..  a1  a0

<tex2html_verbatim_mark>

Non-negative integers must be printed without a sign (+ or -). Numbers in a single line must be separated by a single space and no other characters or extra spaces may appear in the output.

3 2 2 2
3 2 2 3
2 2 3 4
31 4 2 3
3 2 2 7
0 0 0 0

Sample Output

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
#define MAXN 25
const double eps = 1e-8;
LL a,m,b,n;
LL C[MAXN][MAXN];
int Hash[MAXN][MAXN],tot;
double A[MAXN][MAXN];
void init()
{
for (int i = 0 ; i <= 20 ; i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1; j < i ; j++)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
tot = 0;
for (int i = 0 ; i < m ; i++)
for (int j = 0 ; j < n ; j++)
Hash[i][j] = tot++;
}
void build()
{
memset(A,0,sizeof(A));
A[0][0] = 1;
for (int i = 1; i <= tot ; i++)
{
for (int j = 0 ; j <= i ; j++)
{
int l = j , r = i - j;
double tmp = C[i][l] * pow(a * 1.0,l / m) * pow(b * 1.0,r / n);
l %= m ; r %= n;
A[Hash[l][r]][i] += tmp;
}
}
A[tot][tot] = 1;
A[tot][tot + 1] = 1;
tot++;
}
void print(double x)
{
char s[100];
sprintf(s,"%.0lf",x);
if (strcmp(s,"-0") == 0) printf(" %s",s + 1);
else printf(" %s",s);
}
void gauss()
{
for (int i = 0 ; i < tot ; i++)
{
int r = i;
for (int j = i + 1; j < tot ; j++)
{
if (fabs(A[j][i]) > fabs(A[r][i])) r = j;
}
if (fabs(A[r][i]) < eps) continue;
for (int j = i ; j <= tot ; j++) swap(A[r][j],A[i][j]);
for (int j = 0 ; j < tot ; j++)
{
if (i == j) continue;
if (fabs(A[j][i]) < eps) continue;
double tmp = A[j][i] / A[i][i];
for (int k = i ; k <= tot ; k++)
{
A[j][k] -= tmp * A[i][k];
}
}
}
printf("1");
for (int i = tot - 2; i >= 0; i--)
print(A[i][tot] / A[i][i]);
printf("\n");
}
int main()
{
while(scanf("%lld%lld%lld%lld",&a,&m,&b,&n) != EOF)
{
if (n == 0 && m == 0 && b == 0 && n == 0) break;
init();
build();
gauss();
}
return 0;
}

  

1 0 -10 0 1
1 0 -9 -4 27 -36 -23
1 0 -8 0 18 0 -104 0 1
1 0 0 -8 -93 0 24 -2976 2883 -32 -3720 -23064 -29775
1 0 -21 0 189 0 -945 -4 2835 -252 -5103 -1260 5103 -756 -2183 这里思路比较简单。注意有个负0处理参照了别人了的代码。照着抄的。。
思路就是简单记录a,b的各种次幂组合根据组合数确定系数。最后为0.注意最高项为1;

UVALIVE 3891 The Teacher's Side of Math的更多相关文章

  1. UVALive 6073 Math Magic

                                                  6073 Math MagicYesterday, my teacher taught us about m ...

  2. UVA 1397 - The Teacher&#39;s Side of Math(高斯消元)

    UVA 1397 - The Teacher's Side of Math 题目链接 题意:给定一个x=a1/m+b1/n.求原方程组 思路:因为m*n最多20,全部最高项仅仅有20.然后能够把每一个 ...

  3. Math Magic(完全背包)

    Math Magic Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Sta ...

  4. ZOJ3662:Math Magic(全然背包)

    Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common m ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. sqlalchemy 学习-- 多表操作

    一对多:一对一 # one -- many class Students(Base): __tablename__ = "students" sid = Column(Intege ...

  7. sqlalchemy 学习--单表操作

    以下所有代码片段都使用了统一的引用,该引用如下: from sqlalchemy import create_engine, ForeignKey from sqlalchemy.ext.declar ...

  8. [转] fitnesse中的Map处理

    http://blog.csdn.net/doubeizhucele/article/details/42263887 fintesse会把!{}标记的变量视为HashTable对象,展现到页面上的将 ...

  9. zoj3662Math Magic

    Math Magic Time Limit: 3 Seconds       Memory Limit: 32768 KB Yesterday, my teacher taught us about ...

随机推荐

  1. python中socket、socketio、flask-socketio、WebSocket的区别与联系

    socket.socketio.flask-socketio.WebSocket的区别与联系 socket 是通信的基础,并不是一个协议,Socket是应用层与TCP/IP协议族通信的中间软件抽象层, ...

  2. Visual Studio 2014安装包

    点击下载

  3. [问题解决]Python locale error: unsupported locale setting

    原文来源:https://stackoverflow.com/questions/14547631/python-locale-error-unsupported-locale-setting 安装f ...

  4. UVA215 Spreadsheet

    这道题题目大意就是计算带有单元格引用的各单元格的值. 这道题本身不难,有以下几个关键点: 1.如何判断一个单元格循环引用 2.注意对字符串的细致处理 我出现的错误出现在以上两个方面,思路本身是不难的. ...

  5. Linux nohup 后台运行命令

    有一些爬虫的程序需要在后台运行,所以简单总结了一下nohup 的一些用法 基本命令:nohup command  $; 运行之后出现nohup: ignoring input and appendin ...

  6. PAT java大数 A+B和C

    题目描述: 给定区间[-, ]内的3个整数A.B和C,请判断A+B是否大于C. 输入格式: 输入第1行给出正整数T(<=),是测试用例的个数.随后给出T组测试用例,每组占一行,顺序给出A.B和C ...

  7. JAVA-I/O流任务

    作业地址 5. Scanner基本概念组装对象 编写public static List readStudents(String fileName)从fileName指定的文本文件中读取所有学生,并将 ...

  8. Windows IRP

    IRP(I/O Request Packet),是由IO manager发起的对device的IO请求. 当用户调用系统API,如createFile类似的函数,其实是会交给IO manager来做相 ...

  9. 高级C代码的汇编分析

    在windows上,常用的函数调用方式有: Pascal方式,WINAPI(_stdcall)方式 和C方式(_cdecl) _cdecl调用规则: 1,参数从右到左入堆栈 2,在函数返回后,调用者要 ...

  10. mysql 数据包太小会引发错误信息

    Error querying database.  Cause: com.mysql.cj.jdbc.exceptions.PacketTooBigException: Packet for quer ...