Codeforces 940F Machine Learning 带修改莫队
题目链接
题意
给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种:
- 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c_i\)表示\(i\)在\([l,r]\)中的出现次数;
- 将\(a_p\)修改为\(x\).
思路
参考:http://www.cnblogs.com/PinkRabbit/p/8476664.html
\(cnt\)数组记录\(a\)数组中数字的出现次数,\(num\)数组记录\(cnt\)数组中数字的出现次数,因此\(num\)数组中第一个对应值为\(0\)的下标即为\(Mex\).
注:同样的想法也可以用于维护众数的出现次数,\(num\)数组中最大的对应值不为\(0\)的下标即为众数的出现次数。
那么答案如何统计呢?
若答案为\(k\)则数字总数至少为\(1+2+\cdots+k-1=\frac{k*(k-1)}{2}\),所以每次从头开始统计答案是\(O(\sqrt n)\)的复杂度;
另外一个注意点就是\(num[0]\)的大小,也即初始为\(0\)的数字的个数,要开到离散化后的数字总数+1那么大,这是因为\(num[0]\)始终应该有值,因为要对\([0,10^9]\)的所有数统计(感谢粉兔)
Code
#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 100010
using namespace std;
typedef long long LL;
int n,m,blo,temp,nn,a[maxn],t[maxn], bl[maxn], cnt[maxn<<1], num[maxn<<1], l, r, mp[maxn<<1], tot, ans[maxn],
cnt1, cnt2, tim;
struct qnode {
int l,r,tim,id;
bool operator < (const qnode& nd) const {
return bl[l]==bl[nd.l] ? (bl[r]==bl[nd.r] ? tim<nd.tim : bl[r]<bl[nd.r]) : bl[l]<bl[nd.l];
}
}q[maxn];
struct cnode { int x, yt, ys; }c[maxn];
inline void add(int x) { --num[cnt[x]]; ++num[++cnt[x]]; }
inline void del(int x) { --num[cnt[x]]; ++num[--cnt[x]]; }
inline void cha(int x, int y) {
if (l<=x&&x<=r) del(a[x]), add(y);
a[x] = y;
}
void discrete() {
sort(mp, mp+tot);
nn=unique(mp, mp+tot)-mp;
F2(i, 1, n) a[i]=lower_bound(mp,mp+nn,a[i])-mp+1;
F2(i, 1, cnt2) c[i].ys=lower_bound(mp,mp+nn,c[i].ys)-mp+1, c[i].yt=lower_bound(mp,mp+nn,c[i].yt)-mp+1;
}
int main() {
scanf("%d%d", &n, &m); blo = pow(n, 2.0/3.0);
F2(i, 1, n) scanf("%d", &a[i]), t[i] = mp[tot++] = a[i], bl[i]=(i-1)/blo;
F(i, 0, m) {
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
if (op==1) q[cnt1] = {l, r, tim, cnt1}, ++cnt1;
else ++tim, c[++cnt2] = {l, r, t[l]}, t[l] = r, mp[tot++] = r;
}
discrete();
sort(q, q+cnt1);
r=0, l=1;
num[0]=nn+1; tim=0;
F(i, 0, cnt1) {
while (tim<q[i].tim) tim++, cha(c[tim].x, c[tim].yt);
while (tim>q[i].tim) cha(c[tim].x, c[tim].ys), --tim;
while (r<q[i].r) add(a[++r]);
while (l>q[i].l) add(a[--l]);
while (r>q[i].r) del(a[r--]);
while (l<q[i].l) del(a[l++]);
int temp=0;
while (num[temp]) ++temp;
ans[q[i].id] = temp;
}
F(i, 0, cnt1) printf("%d\n", ans[i]);
return 0;
}
Codeforces 940F Machine Learning 带修改莫队的更多相关文章
- CF940F Machine Learning 带修改莫队
题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值. 这里复习一下带修改莫队. 普通的莫队中,以左端点所在块编号为第一关键字,右端点大小 ...
- BZOJ2120 数颜色(带修改莫队)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- bzoj 2120 数颜色 带修改莫队
带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...
- BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- BZOJ.2453.维护队列([模板]带修改莫队)
题目链接 带修改莫队: 普通莫队的扩展,依旧从[l,r,t]怎么转移到[l+1,r,t],[l,r+1,t],[l,r,t+1]去考虑 对于当前所在的区间维护一个vis[l~r]=1,在修改值时根据是 ...
- [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)
BZOJ3585,BZOJ2120,BZOJ3757三合一. 对于树上路径问题,树链剖分难以处理的时候,就用树上带修改莫队. 这里的MEX问题,使用BZOJ3585的分块方法,平衡了时间复杂度. 剩下 ...
- BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)
题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...
- BZOJ2120数颜色(带修改莫队)
莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...
- 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法
[题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...
随机推荐
- [转]struct2 拦截所有没有登录的用户,强行转到登录界面AuthorizationInterceptor
package com.sise.action; import java.util.Map; import com.opensymphony.xwork2.Action; import com ...
- Mysql性能优化四:分库,分区,分表,你们如何做?
分库分区分表概念 分区 就是把一张表的数据分成N个区块,在逻辑上看最终只是一张表,但底层是由N个物理区块组成的 分表 就是把一张数据量很大的表按一定的规则分解成N个具有独立存储空间的实体表.系统读写时 ...
- 洛谷P1378油滴扩展
题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界. 必须等一个油滴扩展完毕才能放置下一个油滴 ...
- hyperledger composer
hyperledger composer 网站搜集 https://hyperledger.github.io/composer/latest/introduction/introduction.ht ...
- CentOS 6.5 下安装redis
1.登录虚拟机后,直接输入命令:yum -y install redis 会出现一个错误: 是因为少了epel源, 2.运行:yum -y install epel-release 最后出现 Comp ...
- Hexo 博客部署到 GitHub
本文简单记录了一下把 Hexo 部署到 GitHub 上的过程,也是搭建静态博客最常用的一种方式. 前面写了关于如何把 Hexo 安装在树莓派上的教程,但树莓派毕竟是连着自己的家的路由器,万一哪天网断 ...
- Python3 初识Python
一 Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC ...
- 数据结构11——KMP
一.博客导航 KMP算法 扩展KMP算法
- Alpha项目冲刺(团队作业5)
团队成员 组 员 学号 朱世杰 211414141 曹晔宁 211306302 一.冲刺(7次 Scrum) [Alpha版本]冲刺阶段--Day 1 [Alpha版本]冲刺阶段--Day 2 [Al ...
- nopcommerce商城系统--技术与系统需求
原址:http://www.nopcommerce.com/technologysystemrequirements.aspx 在这里,我们将着眼于nopCommerce的系统要求.为了运行nopCo ...