stanford deep learning 网站上推荐的阅读目录:

UFLDL Recommended Readings

 

If you're learning about UFLDL (Unsupervised Feature Learning and Deep Learning), here is a list of papers to consider reading. We're assuming you're already familiar with basic machine learning at the level of [CS229 (lecture notes available)].

The basics:

  • [CS294A] Neural Networks/Sparse Autoencoder Tutorial. (Most of this is now in the UFLDL Tutorial, but the exercise is still on the CS294A website.)
  • [1] Natural Image Statistics book, Hyvarinen et al.
    • This is long, so just skim or skip the chapters that you already know.
    • Important chapters: 5 (PCA and whitening; you'll probably already know the PCA stuff), 6 (sparse coding), 7 (ICA), 10 (ISA), 11 (TICA), 16 (temporal models).
  • [2] Olshausen and Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 1996. (Sparse Coding)
  • [3] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer and Andrew Y. Ng. Self-taught learning: Transfer learning from unlabeled data. ICML 2007

Autoencoders:

  • [4] Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 2006.

    • If you want to play with the code, you can also find it at [5].
  • [6] Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. Greedy Layer-Wise Training of Deep Networks. NIPS 2006
  • [7] Pascal Vincent, Hugo Larochelle, Yoshua Bengio and Pierre-Antoine Manzagol. Extracting and Composing Robust Features with Denoising Autoencoders. ICML 2008.
    • (They have a nice model, but then backwards rationalize it into a probabilistic model. Ignore the backwards rationalized probabilistic model [Section 4].)

Analyzing deep learning/why does deep learning work:

  • [8] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation. ICML 2007.

    • (Someone read this and let us know if this is worth keeping,. [Most model related material already covered by other papers, it seems not many impactful conclusions can be made from results, but can serve as reading for reinforcement for deep models])
  • [9] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why Does Unsupervised Pre-training Help Deep Learning? JMLR 2010
  • [10] Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee and Andrew Y. Ng. Measuring invariances in deep networks. NIPS 2009.

RBMs:

  • [11] Tutorial on RBMs.

    • But ignore the Theano code examples.
    • (Someone tell us if this should be moved later. Useful for understanding some of DL literature, but not needed for many of the later papers? [Seems ok to leave in, useful introduction if reader had no idea about RBM's, and have to deal with Hinton's 06 Science paper or 3-way RBM's right away])

Convolution Networks:

  • [12] Tutorial on Convolution Neural Networks.

    • But ignore the Theano code examples.

Applications:

  • Computer Vision

    • [13] Jianchao Yang, Kai Yu, Yihong Gong, Thomas Huang. Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR 2009
    • [14] A. Torralba, R. Fergus and Y. Weiss. Small codes and large image databases for recognition. CVPR 2008.
  • Audio Recognition
    • [15] Unsupervised feature learning for audio classification using convolutional deep belief networks, Honglak Lee, Yan Largman, Peter Pham and Andrew Y. Ng. In NIPS 2009.

Natural Language Processing:

  • [16] Yoshua Bengio, Réjean Ducharme, Pascal Vincent and Christian Jauvin, A Neural Probabilistic Language Model. JMLR 2003.
  • [17] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. ICML 2008.
  • [18] Richard Socher, Jeffrey Pennington, Eric Huang, Andrew Y. Ng, and Christopher D. Manning. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. EMNLP 2011
  • [19] Richard Socher, Eric Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D. Manning. Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. NIPS 2011
  • [20] Mnih, A. and Hinton, G. E. Three New Graphical Models for Statistical Language Modelling. ICML 2007

Advanced stuff:

  • Slow Feature Analysis:

    • [21] Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 2005.
  • Predictive Sparse Decomposition
    • [22] Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun, "Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition", Computational and Biological Learning Lab, Courant Institute, NYU, 2008.
    • [23] Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun, "What is the Best Multi-Stage Architecture for Object Recognition?", In ICCV 2009

Mean-Covariance models

  • [24] M. Ranzato, A. Krizhevsky, G. Hinton. Factored 3-Way Restricted Boltzmann Machines for Modeling Natural Images. In AISTATS 2010.
  • [25] M. Ranzato, G. Hinton, Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. CVPR 2010
    • (someone and tell us if you need to read the 3-way RBM paper before the mcRBM one [I didn't find it necessary, in fact the CVPR paper seemed easier to understand.])
  • [26] Dahl, G., Ranzato, M., Mohamed, A. and Hinton, G. E. Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine. NIPS 2010.
  • [27] Y. Karklin and M. S. Lewicki, Emergence of complex cell properties by learning to generalize in natural scenes, Nature, 2008.
    • (someone tell us if this should be here. Interesting algorithm + nice visualizations, though maybe slightly hard to understand. [seems a good reminder there are other existing models])

Overview

  • [28] Yoshua Bengio. Learning Deep Architectures for AI. FTML 2009.

    • (Broad landscape description of the field, but technical details there are hard to follow so ignore that. This is also easier to read after you've gone over some of literature of the field.)

Practical guides:

  • [29] Geoff Hinton. A practical guide to training restricted Boltzmann machines. UTML TR 2010–003.

    • A practical guide (read if you're trying to implement and RBM; but otherwise skip since this is not really a tutorial).
  • [30] Y. LeCun, L. Bottou, G. Orr and K. Muller. Efficient Backprop. Neural Networks: Tricks of the trade, Springer, 1998
    • Read if you're trying to run backprop; but otherwise skip since very low-level engineering/hackery tricks and not that satisfying to read.

Also, for other lists of papers:

  • [31] Honglak Lee's Course
  • [32] from Geoff's tutorial

stanford推荐阅读目录的更多相关文章

  1. [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录

    [NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理  原贴:   https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...

  2. Web前端开发推荐阅读书籍

    前言 前端工程师在中国兴起也就5年左右,以前公司里没有专门前端工程师的这个职位,很多前端方面的任务都是由全栈工程师来完成,有的基础一点的后台或者设计的帮助分担一些.但是随着互联网的快速发展,特别是所谓 ...

  3. 详解设计模式之工厂模式(简单工厂+工厂方法+抽象工厂) v阅读目录

    1楼留头头大神:http://www.cnblogs.com/toutou/p/4899388.html   v阅读目录 v写在前面 v简单工厂模式 v工厂方法模式 v抽象工厂模式 v博客总结 v博客 ...

  4. Java程序员到架构师的推荐阅读书籍

    作为Java程序员来说,最痛苦的事情莫过于可以选择的范围太广,可以读的书太多,往往容易无所适从.我想就我自己读过的技术书籍中挑选出来一些,按照学习的先后顺序,推荐给大家,特别是那些想不断提高自己技术水 ...

  5. 彻底弄懂JS的事件冒泡和事件捕获(不推荐阅读)

    由于搬去敌台了,好久没来博客园,今天无意中翻到有“误认子弟”的评论,这里特意做个说明. 本文中关于事件冒泡和事件捕获的描述和例子都是OK的,错就错在后面用jquery去展示了利用事件冒泡的例子有误,其 ...

  6. 项目管理利器——Maven阅读目录

    阅读目录 一.Maven介绍及环境搭建 二.构建Maven版的Hello World 三.Maven常见构建命令 四.自动创建目录骨架 五.Maven中的坐标和仓库 六.在eclipse中安装Mave ...

  7. Java程序员进阶架构师推荐阅读书籍

    [IT168 技术]作为Java程序员来说,最痛苦的事情莫过于可以选择的范围太广,可以读的书太多,往往容易无所适从.我想就我自己读过的技术书籍中挑选出来一些,按照学习的先后顺序,推荐给大家,特别是那些 ...

  8. python之路——阅读目录

    阅读目录 希望大家多多交流,有错误的地方请随时指正,笔记记得可能有点杂 一.python入门 计算机基础 编程语言发展史和python安装  二.数据类型.字符编码.文件处理 python基础数据类型 ...

  9. C++ day01 预备知识、C++综述、教材、推荐阅读。

    C++ day01: 1.预备知识? 1)什么是编程 编程,即编订程序. 程序 = 数据 + 算法(蛋糕 = 糖.鸡蛋.奶油 + 打鸡蛋.加糖.烤) 2)编程语言 最初的编程是用二进制代码(即“机器码 ...

随机推荐

  1. dev 小问题列表

    1. MemoEdit > Lines Text lines are separated by line feed and carriage return characters ("\ ...

  2. jquery拓展插件开发

    学习参考网址整理: http://blog.csdn.net/chenxi1025/article/details/52222327 http://www.cnblogs.com/ellisonDon ...

  3. Nuxt使用高德地图

    事先准备 注册账号并申请Key 1. 首先,注册开发者账号,成为高德开放平台开发者 2. 登陆之后,在进入「应用管理」 页面「创建新应用」 3. 为应用添加 Key,「服务平台」一项请选择「 Web ...

  4. 关于在python manage.py createsuperuser时报django.db.utils.OperationalError: no such table: auth_user的解决办法

    在stackflow上看到解决的办法是需要进行数据路的migrate:https://stackoverflow.com/questions/39071093/django-db-utils-oper ...

  5. 编译java-cef

    javacef即java Chromium Embedded Framework,其功能是通过在java应用中嵌入谷歌浏览器内核Chromium. 编译java-cef的过程可参考以下文档及视频: h ...

  6. Python中的默认参数(转)

    add by zhj: Python设计者为何将默认参数设计成这样呢?参见Python函数参数默认值的陷阱和原理深究 原文:https://github.com/acmerfight/insight_ ...

  7. git原理:引用规格

    引用规格(refspec):就是在 .git/config 里面那个配置远程仓库的东西 [remote "origin"]url = https://github.com/test ...

  8. 纯手写wcf代码,wcf入门,wcf基础教程

    1.定义服务协定     =>定义接口 using System.ServiceModel; namespace WcfConsole { /// <summary> /// 定义服 ...

  9. Java设计模式之《单例模式》及应用场景(转发:http://www.cnblogs.com/V1haoge/p/6510196.html)

    所谓单例,指的就是单实例,有且仅有一个类实例,这个单例不应该由人来控制,而应该由代码来限制,强制单例. 单例有其独有的使用场景,一般是对于那些业务逻辑上限定不能多例只能单例的情况,例如:类似于计数器之 ...

  10. 剑指offer 面试12题

    面试12题: 题目:矩阵中的路径 题:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格 ...