\(\Huge{[JLOI2012]树}\)

题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

3 3

1 2 3

1 2

1 3

输出样例#1:

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000

思路

安利博客

题目传送门


先让我们看这句话

路径中节点的深度必须是升序的。

那就要保证是向下搜的呗。

用链式前向星存边,记录父亲, 只要保证下个节点不是他的父亲即可

读入时

for(int i=1;i<=n-1;i++)
{
cin>>x>>y;
add(x,y);
fa[y]=x;
}

搜索时

if(fa[x]!=nxt)

再看这句话

路径不必一定从根节点开始。

那就把点全枚举一边就行啊,

for(int i=1;i<=n;i++)
{
dfs(i,w[i]);
}

问有多少条路径的节点总和达到S

当时本人不太明白的,是要到s才行,不能超过s。所以可以加入剪枝

超过s就不用搜了qwq。

达到s后ans++,不用搜了

if(dis>s)
return;
if(dis==s)
{
ans++;
return;
}

下面献上简陋的代码

不要抄袭,代码有锅QAQ

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define IL inline
#define R register
using namespace std;
struct node{
int u,v;
}fuck[100007];
int head[100007],fa[100007],x,y,w[100007],n,s,tot=0,ans=0;
IL void read(int &x)
{
int f=1;x=0;char s=getchar();
while (s<'0'||s>'9'){if(s=='-') f=-1 s=getchar();}
while (s>='0'&&s<='9'){ x=x*10+s-'0'; s=getchar();}
x*=f;
}
void add(int x,int y)
{
fuck[++tot].u=head[x];//++?
fuck[tot].v=y;
head[x]=tot;
} IL void dfs(int x,int dis)
{
if(dis>s)
return;
if(dis==s)
{
ans++;
return;
}
for(int i=head[x];i;i=fuck[i].u)
{
int nxt=fuck[i].v;
if(fa[x]!=nxt)
dfs(nxt,dis+w[nxt]);
}
} int main()
{
read(n);read(s);
for(int i=1;i<=n;i++)
cin>>w[i];
for(int i=1;i<=n-1;i++)
{
cin>>x>>y;
add(x,y);
fa[y]=x;
}
for(int i=1;i<=n;i++)
{
dfs(i,w[i]);
}
cout<<ans<<endl;
return 0;
}

\({\color{Gold}{By}}\)

\({\color{Gold}{enceladsu}}\)

题解 P3252 【[JLOI2012]树】的更多相关文章

  1. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  2. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  3. 洛谷P3252 [JLOI2012]树

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不 ...

  4. P3252 [JLOI2012]树

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不 ...

  5. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  6. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  7. 2783: [JLOI2012]树( dfs + BST )

    直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...

  8. 「LuoguP3252」 [JLOI2012]树

    Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深 ...

  9. BZOJ2783: [JLOI2012]树

    Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...

随机推荐

  1. EasyUI应用总结

    1 <%@ page language="java" contentType="text/html; charset=utf-8" 2 pageEncod ...

  2. Server嵌套事务处理的方法

    源文档 http://wenku.baidu.com/link?url=yUH8Yhb8isIvJb8A7c0Hv_ktFSLt-JTvrQd2e2TGmFwzwGWqkjFfb1tXv5ZR1FmP ...

  3. Python3.7安装Django

    一.系统环境 操作系统:Win7 64位 Python版本:3.7 二.安装参考 Django的下载网址:https://www.djangoproject.com/download/ 当前最新版本: ...

  4. SqlServer——神奇代码1之Update

    说明:一个带有update的循环的代码.很简单,但是在QQ群里问了,应该说是很少有人注意这个问题,也就是很少有人真的理解SQL中的Update. 代码如下: if object_id('tempdb. ...

  5. html5之音频、视频(video&audio)

    音频&视频 本篇为本人的学习笔记. 在Html5之前,浏览器对于视频和音频的处理并没有一个标准.因此在网页中看到的视频,都是通过第三插件的方式嵌入的,如:QuickTime.RealPlaye ...

  6. php抓取网页中的内容

    以下就是几种常用的用php抓取网页中的内容的方法.1.file_get_contentsPHP代码代码如下:>>>>>>>>>>>&g ...

  7. excel中的绝对引用和相对应用

    六.相对引用和绝对引用     1.相对引用   单元格或单元格区域的相对引用是指相对于包含公式的单元格的相对位置.例如,单元格 B2 包含公式 =A1 ;Excel 将在距单元格 B2 上面一个单元 ...

  8. FileUtils 文件下载 文件导出

    public class FileUtils { /// <summary> /// 文件下载 /// </summary> /// <param name=" ...

  9. Linux中的SELinux与chcon以及Samba实现【转】

    一.SELinux SElinux的前身是NSA(美国国家安全局)发起的一个项目.它的目的是将系统加固到可以达到军方级别. 为什么NSA选择Linux呢? 在目前市面上大多数操作系统都是商用闭源的,只 ...

  10. .net在线HTML编辑器

    //在线网页编辑器, <script> var editor2 = new baidu.editor.ui.Editor({//实例化编辑器 initialContent: '', min ...