传送带

Time Limit: 1 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

  输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

  输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

  0 0 0 100
  100 0 100 100
  2 2 1

Sample Output

  136.60

HINT

  对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
  1<=P,Q,R<=10

Main idea

  给定平面上的两条线段AB,CD,在AB,CD上移动会有一个特别的速度,在平面上移动会有一个速度,求从点A到点D的最短时间。

Solution

  首先发现坐标范围-1000~1000,并且精度要求不高,从此基础上思考。我们先考虑从AB上一个定点O到CD上的距离,发现其中从O到CD的距离是先减小再增大的,我们大胆猜测这道题的答案满足单峰性。然后我们可以用三分(效率为O(log1.5(n)))来实现。
  我们现在可以求出一个定点求CD的最短时间,这里用三分实现。然后怎么办呢?
  由于AB也是一条线段,我们大胆猜测,可以再在AB上三分一个点,这样就是三分套三分,最后发现其正确性可以证明。
  三分方法(这里给出求最小值的方法):在区间1/3处和2/3处各取两个点l,r,如果左段(即L~l)的答案比右段(r~R)的更优,那么由于单峰性(图像类似一个抛物线)可以抹去右段,多次操作使得答案最优。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std; const int ONE=;
const int MOD=; int n; struct power
{
double x,y;
double AB,CD,PM;
friend power operator +(power a,power b) {a.x=a.x+b.x; a.y=a.y+b.y; return a;}
friend power operator -(power a,power b) {a.x=a.x-b.x; a.y=a.y-b.y; return a;} };
power A,B,C,D,v;
power l1,l2,r1,r2;
power a,b;
power pass; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} double dist(power a,power b)
{
return (double)sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} double Getdist(power E,power F)
{
return dist(A,E)/v.AB + dist(E,F)/v.PM + dist(F,D)/v.CD;
} double Trivide(power O)
{
power l=C,r=D,pass,a,b;
while(dist(l,r)>0.001)
{
pass.x=(r.x-l.x)/3.0; pass.y=(r.y-l.y)/3.0;
a=l+pass; b=r-pass;
if(Getdist(O,a) < Getdist(O,b)) r=b;
else l=a;
}
return Getdist(O,l);
} int main()
{
scanf("%lf %lf %lf %lf",&A.x,&A.y,&B.x,&B.y);
scanf("%lf %lf %lf %lf",&C.x,&C.y,&D.x,&D.y);
scanf("%lf %lf %lf",&v.AB,&v.CD,&v.PM); power l=A,r=B;
while(dist(l,r)>0.001)
{
pass.x=(r.x-l.x)/3.0; pass.y=(r.y-l.y)/3.0;
a=l+pass; b=r-pass;
if(Trivide(a) < Trivide(b)) r=b;
else l=a;
} printf("%.2lf",Trivide(l));
}

【BZOJ1857】【SCOI2010】传送带 [三分]的更多相关文章

  1. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  2. [BZOJ1857][SCOI2010]传送带-[三分]

    Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...

  3. BZOJ1857 Scoi2010 传送带 【三分】

    BZOJ1857 Scoi2010 传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P ...

  4. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  5. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  6. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

  7. bzoj 1857: [Scoi2010]传送带 三分

    题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 934  Solved: 501[Submit][Stat ...

  8. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  9. 洛谷P2571 [SCOI2010]传送带 [三分]

    题目传送门 传送带 题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移 ...

  10. BZOJ1857 [Scoi2010]传送带 【三分法】

    题目链接 BZOJ1857 题解 画画图就发现实际上是在\(AB\)上和\(CD\)上分别选两个点\(E\),\(F\),使得\(t_{AE} + t_{EF} + t_{FD}\)最小 然后猜想到当 ...

随机推荐

  1. vux用法

    其实官网写的很详细了 但是好多时候没有仔细看的耐心 下面基本也是vux官网步骤: 很多人需要$t未定义问题 其实按着官网来就能解决这个报错: 如果你遇到 $t 报错问题,请不要开 issue,升级 v ...

  2. Percona-Tookit工具包之pt-mysql-summary

      Preface       Sometimes we need to collect information of  MySQL server as a report when we first ...

  3. MySQL☞dual虚拟表

    Dual表:虚拟表,专门用来测试各种函数:(本来以为跟Oracle中的dual表一样,发现还是不太一样)

  4. 第二十四篇configparser(**)

    configparser模块 config:配置,parser:解析.字面意思理解configparser模块就是配置文件的解析模块. 来看一个好多软件的常见文档格式如下: [DEFAULT] # 标 ...

  5. zabbix从入门到精通

    第1章 zabbix监控 1.1 为什么要监控 在需要的时刻,提前提醒我们服务器出问题了 当出问题之后,可以找到问题的根源   网站/服务器 的可用性 1.1.1 网站可用性 在软件系统的高可靠性(也 ...

  6. android4.1 Wifi 浅析

    简单分析下wifi相关类,首先了解几个主要概念 AsyncChannel 简单理解: AsyncChannel,就是借助Messenger 机制,让两个不同的handler之间进行通信. AsyncC ...

  7. js保留两位小数,不四舍五入

    //不进行四舍五入,保留两位小数 function getKeepTwoDecimals(val) { var newVal = (parseInt(val * 100) / 100).toFixed ...

  8. MapReduce 并行编程理论基础

    对于mapreduce这一并行计算模型,一直以来都不是很清楚其具体的执行细节,今天看了学院一位老师的实验指导书,对这一过程有了一个初步的理解,特别是map阶段和reduce阶段,所以做了一份笔记,现在 ...

  9. angular2采用自定义指令(Directive)方式加载jquery插件

    由于angular2兴起不久,相关插件还是很少,所以有时候不得不用一些jquery插件来完成项目, 那么如何把jquery插件放到angular2中呢?采用自定义指令! 在上下文之前要引入jquery ...

  10. CSS设计指南之ID属性

    1.用于页内导航的ID ID也可以用在页内导航连接中.下面就是一个链接,其目标是同一页的另一个位置. <a href="#bio">Biography</a> ...