论文笔记(1)——《Where's Wally?Precise User Discovery Attacks in Location Proximity Services》
Abstract:
位置相近服务在社交和移动网络的广泛使用是基于可用性和用户隐私的平衡,但引发了三角定位攻击的风险。文章系统化地讨论了此类攻击的防范,包括问题在不同临近模型下的形式化,针对不同模型的有效攻击,以及攻击需要的询问次数的确界,并针对实际应用进行实验。
一)对攻击的建模:UDP,已知包含点p的欧氏平面区域A以及一个提供邻域信息的oracle,找到点p的位置
邻域预言机(proximity oracle)定义:,输入为p,查询以某点为圆心的区域,若与被攻击者距离小于r,返回1,否则返回0
原问题化为两部分:
1)Disk Coverage:将A用最少的r-邻域覆盖
归约为UDG(Unit Disk Graph)上的最小支配集(MDS)问题,是NP-hard,但存在线性时间的5-近似随机算法(结果与最优解差距不超过五倍)
近似算法:随机取点加入支配集,去掉所有相邻点,重复到图为空。时间复杂度为O(|V|)
UDG:平面上有许多取样点,若两点之间距离小于r则存在一条边,从而找其最小支配集便必定可以用r-邻域覆盖所有取样点
For max-coverage, the distance between points in the dominating set is at least
2)Disk Search:找到p在哪一个邻域
每个disk中的点可被一个“外接”矩形完全覆盖,利用一个二分算法可以在O(rlogr)时间解决(查询次数为logr)
所以总的查询次数为
二)RUDP(Rounding User Discovery Problem)
对不同距离的p与p_u,社交网络通常返回不同的距离值而非固定的r,从而此处研究Rounding Class Family解决这个问题
RCF由一系列tuple 组成,
为rounding value,I1,...,In构成了R+的一个partition,且
通过不断的三角测量缩小下一个点的范围,直到缩到r=delta_1,从而原算法的总运行时间为(|S|为rounding class family的大小,显然也是询问次数)
三)Randomized User Discovery Problem
对某个点的查询返回的结果服从一个随机分布(每次返回的结果含高斯噪声),经过一番数学处理得知,解决RANDUDP问题的误差为的复杂度为
四)实际问题
查询空间:大,通过个人信息缩减查询空间
联系:伪造身份加好友攻击
攻击的探测:此类服务有探测伪造位置的机制,利用伪装机制(参见The Man Who Was There: Validating Check-ins in Location-Based Services)
准确度:与GPS精度有关
投影误差:坐标需要用合适的投影方法获得,此处采用等距圆锥投影(equidistant conic projection)
论文笔记(1)——《Where's Wally?Precise User Discovery Attacks in Location Proximity Services》的更多相关文章
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
- 论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...
- 论文笔记(2):A fast learning algorithm for deep belief nets.
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...
- 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...
随机推荐
- vbox中虚拟ubuntu增加新的虚拟硬盘
vbox中虚拟ubuntu增加新的虚拟硬盘 在virtualbox中装好Ubuntu后,发现硬盘空间不够使用 了.以下是搜集整理的解决办法: 1. 添加新硬盘 设置 -> ...
- Git学习总结
master主分支合并dev分支,代码 :git merge dev ,跳出如下界面.输入:wq,(:wq命令是LINUX命令,强制写入文件并结束),可以强制合并.但为什么会跳出该界面,我也没搞清楚. ...
- iOS - 使用自定义字体-苹方字体
苹方提供了六个字重,font-family 定义如下:苹方-简 常规体font-family: PingFangSC-Regular, sans-serif;苹方-简 极细体font-family: ...
- (转).NET开发人员必备的可视化调试工具(你值的拥有)
1:如何使用 1:点击下载:.NET可视化调试工具 (更新于2016-11-05 20:55:00) 2:解压RAR后执行:CYQ.VisualierSetup.exe 成功后关掉提示窗口即可. PS ...
- MongoDB的ObjectId和基本操作增删改查(3)
ObjectId 基本操作增删改查 增: insert 介绍: mongodb存储的是文档,. 文档是json格式的对象. 语法: db.collectionName.insert(document) ...
- 1.GoldenGate 简单的一对一配置
一,软件安装 源端和目标端均执行(只要修改相应的目录) 1.上传软件,放到ogg的安装目录,并解压 mkdir /home/oracle/ogg unzip ogg112101_fbo_g ...
- Oracle Database 11g Release 2(11.2.0.3.0) RAC On Redhat Linux 5.8 Using Vmware Workstation 9.0
一,简介 二,配置虚拟机 1,创建虚拟机 (1)添加三块儿网卡: 主节点 二节点 eth0: 公网 192.168.1.20/24 NAT eth0: 公网 192.168.1 ...
- C语言中字符串结束符'\0'
转自:http://www.cnblogs.com/kaituorensheng/archive/2013/12/09/3464462.html 本质 '\0'就是8位的00000000,因为字符类型 ...
- 【转载】科研ppt制作的体会
转载自实验室陈家雷学长发在bbs 上的帖子,讲解了自己制作ppt的心得体会.学习下. 附件中是我昨天晚上我的组会ppt的pdf版本,另外我对ppt的制作有点自己的理解,基本上都是去年暑假在Harvar ...
- 虚拟机(VMware12 pro)安装Mac OS 10.10
下载VMware12pro,Mac OS 10.10.ios,虚拟机破解: 在虚拟机中创建新虚拟机://http://cdnnn.07net01.com/linux/2016/01/1130384.h ...