Description

 

A set of n<tex2html_verbatim_mark> 1-dimensional items have to be packed in identical bins. All bins have exactly the same length l<tex2html_verbatim_mark> and each item i<tex2html_verbatim_mark> has length lil<tex2html_verbatim_mark> . We look for a minimal number of bins q<tex2html_verbatim_mark> such that

  • each bin contains at most 2 items,
  • each item is packed in one of the q<tex2html_verbatim_mark> bins,
  • the sum of the lengths of the items packed in a bin does not exceed l<tex2html_verbatim_mark> .

You are requested, given the integer values n<tex2html_verbatim_mark> , l<tex2html_verbatim_mark> , l1<tex2html_verbatim_mark> , ..., ln<tex2html_verbatim_mark> , to compute the optimal number of bins q<tex2html_verbatim_mark> .

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The first line of the input file contains the number of items n<tex2html_verbatim_mark>(1n105)<tex2html_verbatim_mark> . The second line contains one integer that corresponds to the bin length l10000<tex2html_verbatim_mark> . We then have n<tex2html_verbatim_mark> lines containing one integer value that represents the length of the items.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

For each input file, your program has to write the minimal number of bins required to pack all items.

Sample Input

1

10
80
70
15
30
35
10
80
20
35
10
30

Sample Output

6

Note: The sample instance and an optimal solution is shown in the figure below. Items are numbered from 1 to 10 according to the input order.

 
将所有物品由大到小排序,从大到小装入物品,如果某个装了一个物品的BIN的余量可以再装入一个物品,就把物品转入,否则就申请一个新的BIN.
 
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
int x[];
int main(){
int t;cin>>t;
int g=;
while(t--){
if(g++!=)puts("");
int n;cin>>n;int m;cin>>m;
int sum=;
for(int i=;i<n;i++){
scanf("%d",x+i);
}
sort(x,x+n);
int i=,j=n-;
while(i<j){
if(x[i]+x[j]<=m){
j--;i++;sum++;
}else{j--;sum++;}
}
if(i==j)sum++;
cout<<sum<<endl;
}
return ;
}

POJ2782:Bin Packing的更多相关文章

  1. Bin Packing

    Bin Packing 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=85904#problem/F 题目: A set of  ...

  2. UVa 102 - Ecological Bin Packing(规律,统计)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  3. UVa - 102 - Ecological Bin Packing

    Background Bin packing, or the placement of objects of certain weights into different bins subject t ...

  4. Vector Bin Packing 华为讲座笔记

    Vector bin packing:first fit / best fit / grasp 成本:性价比 (先验) 设计评价函数: evaluation function:cosine simil ...

  5. UVA 1149 Bin Packing

    传送门 A set of n 1-dimensional items have to be packed in identical bins. All bins have exactly the sa ...

  6. 高效算法——Bin Packing F - 贪心

      Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Descripti ...

  7. poj 2782 Bin Packing (贪心+二分)

    F - 贪心+ 二分 Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Description ...

  8. UVA 1149 Bin Packing 二分+贪心

    A set of n 1-dimensional items have to be packed in identical bins. All bins have exactly the samele ...

  9. UVa 1149 (贪心) Bin Packing

    首先对物品按重量从小到大排序排序. 因为每个背包最多装两个物品,所以直觉上是最轻的和最重的放一起最节省空间. 考虑最轻的物品i和最重的物品j,如果ij可以放在一个包里那就放在一起. 否则的话,j只能自 ...

随机推荐

  1. excel列显示形式互换(字母与数字)

    以office2007为例: excel选项>公式>使用公式下的'R1C1引用样式' 打上钩显示形式为数字,不打钩显示形式为字母

  2. 转:Javascript继承机制的设计思想

    我一直很难理解Javascript语言的继承机制. 它没有"子类"和"父类"的概念,也没有"类"(class)和"实例" ...

  3. 设计模式(九)外观模式Facade(结构型)

    设计模式(九)外观模式Facade(结构型) 1. 概述 外观模式,我们通过外观的包装,使应用程序只能看到外观对象,而不会看到具体的细节对象,这样无疑会降低应用程序的复杂度,并且提高了程序的可维护性. ...

  4. YII 路由配置

    伪静态,通过设置server服务,做域名地址的转换工作. urlManager地址美化,通过程序的方式实现地址美化工作. 通过在主配置文件里配置组件来实现: 'components'=>arra ...

  5. 关于DataGridViewComboBoxCell修改后提交数据源

    最近在项目遇到一个功能实现.是在DataGridView中DataGridViewComboboxColumn列绑定数据源, DisplayMember为数据表的Name列,ValueMember是数 ...

  6. stm32之CAN总线基础

    can总线协议概述: CAN是Controller Area Network的缩写,由德国博世公司开发:CAN通过ISO11891以及ISO11519进行了标准化:     CAN总线的特点: 1.多 ...

  7. PyDev下PyQt 的尝试

    刚刚装完PyDev ,试了下之前写的调用PyQt的下代码,发现运行出错:搜索只还需在System PYHONPATH下 添加PyQt的路径,步骤如下: eclipse--window--Prefere ...

  8. 【转】Lua编程规范

    Lua编程规范 1. 版本和版权问题 版权和版本的声明位于定义文件的开头(参见示例1-1),主要内容有: (1)版本号 <主版本号><次版本号><修订号> (2)文 ...

  9. iOS开发之使用Ad Hoc进行测试

    由于最近某个项目需要给别人测试,使用的是Ad Hoc方法 首先登录开发者官网配置证书 1.添加Certificates,从电脑获取certSigningRequest然后添加进去 2.在Identif ...

  10. WPF Multi-Touch 开发:基础触屏操作(Raw Touch)

    原文 WPF Multi-Touch 开发:基础触屏操作(Raw Touch) 多点触控(Multi-Touch)就是通过与触屏设备的接触达到人与应用程序交互的操作过程.例如,生活中经常使用的触屏手机 ...