D - Common Subsequence

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d
& %I64u

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0
一定要用记忆化,要不然会超时,还有刚开始数组开的太小了,只开到一百,结果是RE。改到600后就好了。
my answer :
一、记忆化了的。
#include<iostream>
#include<stdio.h>
#include<string>
#include<cstring>
using namespace std;
int main()
{
char a[600],b[600];
while(scanf("%s%s",a,b)!=EOF)
{
int t1=strlen(a);
int t2=strlen(b);
int dp[600][600];
memset(dp,-1,sizeof(dp));
for(int i=t1;i>=0;i--)
a[i+1]=a[i];
for(int j=t2;j>=0;j--)
b[j+1]=b[j];
for(int i=0;i<=t1;i++){
for(int j=0;j<=t2;j++){
if(i==0||j==0)dp[i][j]=0;
else if(a[i]==b[j]&&dp[i][j]<0){dp[i][j]=dp[i-1][j-1]+1;}
else if(dp[i][j]<0){dp[i][j]=max(dp[i-1][j],dp[i][j-1]);} }
}
printf("%d\n",dp[t1][t2]);
}
return 0;
}
别人写的:

进行了空间的优化:
<pre name="code" class="cpp">#include <stdio.h>
#include <string.h>
char s1[1001], s2[1001];
int dp[1001], t, old, tmp;
int main(){
scanf("%d", &t);
getchar();
while(t--){
gets(s1);
gets(s2);
memset(dp, 0, sizeof(dp));
int lenS1=strlen(s1), lenS2=strlen(s2);
for(int i=0; i<lenS1; i++){//若s1[i]==s2[j], dp[i][j] = dp[i-1][j-1]+1 否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
old=0;//此处进行了空间优化,old 代表 dp[i-1][j-1] dp[j-1] 代表 dp[i][j-1], dp[j] 代表 dp[i-1][j]
for(int j=0; j<lenS2; j++){
tmp = dp[j];
if(s1[i]==s2[j])
dp[j] = old+1;
else
if(dp[j-1]>dp[j])dp[j]=dp[j-1];
old = tmp;
}
}
printf("%d\n", dp[lenS2-1]);
}
return 0;
}

写的太烂,下面是学姐的代码:



#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
#define max_n 1000
#define max_m 1000
int dp[max_n][max_m];
char s[max_n],t[max_m];
int main()
{
while(scanf("%s%s",s,t)!=EOF)
{
int n=strlen(s);
int m=strlen(t);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(s[i]==t[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

再写一个:

试试即记忆化,又空间优化一下:等一会吧。。。。。。让我想想。。。

D - Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. LCS POJ 1458 Common Subsequence

    题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; ( ...

  7. Common Subsequence LCS

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F 题目: Description A subsequ ...

  8. poj 1458 Common Subsequence

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 46387   Accepted: 19 ...

  9. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  10. Common Subsequence(dp)

    Common Subsequence Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 951  Solved: 374 Description A subs ...

随机推荐

  1. Unity CCTween UGUI 动画插件

    在这简单的介绍一下 CCTween 动画插件的使用 因为GIF 制作软件不太好(网上随便下载的)所以导致效果不太好,有时间我重新制作一下 这是一下简单的效果 下面介绍怎么使用 首先 先下载 CCTwe ...

  2. ASP.NET 验证码 不同浏览器 不刷新问题

    具体为什么不刷新是缓存机制不同,验证码图片的src或ImageUrl的获取是来自一个文件,由于连接地址没变所以不同内核浏览器有的会认为源没有变,解决办法就是在连接后面加上一个随机参数如可以用JS的Ma ...

  3. 谈谈css3的字体大小单位[rem]

    最近接收了一份面试题,内容是移动端传播的H5(在中国通常这么叫)广告页. 秉承移动端web尽量少用px的概念,我使用rem进行了一次重构.对于rem,基本是给 html/body 元素定义一个字体大小 ...

  4. OC中文件的操作

    OC中文件操作,在之前的文章中,已经接触到了文件的创建了,但是那不是很具体和详细,这篇文章我们就来仔细看一下OC中是如何操作文件的: 第一.首先来看一下本身NSString类给我们提供了哪些可以操作文 ...

  5. Spring事务异常回滚,捕获异常不抛出就不会回滚(转载) 解决了我一年前的问题

    最近遇到了事务不回滚的情况,我还考虑说JPA的事务有bug? 我想多了.......    为了打印清楚日志,很多方法我都加tyr catch,在catch中打印日志.但是这边情况来了,当这个方法异常 ...

  6. lightoj 1079 Just another Robbery

    题意:给出银行的个数和被抓概率上限.在给出每个银行的钱和抢劫这个银行被抓的概率.求不超过被抓概率上线能抢劫到最多的钱. dp题,转移方程 dp[i][j] = min(dp[i-1][j] , dp[ ...

  7. QF——OC中的SEL类型和Block

    @selector(): 可以理解@selector()就是取类方法的编号,他的基本行为类似于C语言中的函数指针(指向函数的指针).它们通过传递方法的地址(或编号)来实现把方法当做参数的效果. 不过在 ...

  8. python 装饰器、内部函数、闭包简单理解

    python内部函数.闭包共同之处在于都是以函数作为参数传递到函数,不同之处在于返回与调用有所区别. 1.python内部函数 python内部函数示例: def test(*args): def a ...

  9. J2SE知识点摘记(二十)

    List 1.3.1        概述 前面我们讲述的Collection接口实际上并没有直接的实现类.而List是容器的一种,表示列表的意思.当我们不知道存储的数据有多少的情况,我们就可以使用Li ...

  10. (8) Xamarin使用Jar檔

    原文 Xamarin使用Jar檔 这个范例是如何在Xamarin.Android中去使用一个我们自行在开发的JAR档案. 主要会执行的步骤如下 在Xamarin建立一个Android Java Bin ...