D - Common Subsequence

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d
& %I64u

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0
一定要用记忆化,要不然会超时,还有刚开始数组开的太小了,只开到一百,结果是RE。改到600后就好了。
my answer :
一、记忆化了的。
#include<iostream>
#include<stdio.h>
#include<string>
#include<cstring>
using namespace std;
int main()
{
char a[600],b[600];
while(scanf("%s%s",a,b)!=EOF)
{
int t1=strlen(a);
int t2=strlen(b);
int dp[600][600];
memset(dp,-1,sizeof(dp));
for(int i=t1;i>=0;i--)
a[i+1]=a[i];
for(int j=t2;j>=0;j--)
b[j+1]=b[j];
for(int i=0;i<=t1;i++){
for(int j=0;j<=t2;j++){
if(i==0||j==0)dp[i][j]=0;
else if(a[i]==b[j]&&dp[i][j]<0){dp[i][j]=dp[i-1][j-1]+1;}
else if(dp[i][j]<0){dp[i][j]=max(dp[i-1][j],dp[i][j-1]);} }
}
printf("%d\n",dp[t1][t2]);
}
return 0;
}
别人写的:

进行了空间的优化:
<pre name="code" class="cpp">#include <stdio.h>
#include <string.h>
char s1[1001], s2[1001];
int dp[1001], t, old, tmp;
int main(){
scanf("%d", &t);
getchar();
while(t--){
gets(s1);
gets(s2);
memset(dp, 0, sizeof(dp));
int lenS1=strlen(s1), lenS2=strlen(s2);
for(int i=0; i<lenS1; i++){//若s1[i]==s2[j], dp[i][j] = dp[i-1][j-1]+1 否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
old=0;//此处进行了空间优化,old 代表 dp[i-1][j-1] dp[j-1] 代表 dp[i][j-1], dp[j] 代表 dp[i-1][j]
for(int j=0; j<lenS2; j++){
tmp = dp[j];
if(s1[i]==s2[j])
dp[j] = old+1;
else
if(dp[j-1]>dp[j])dp[j]=dp[j-1];
old = tmp;
}
}
printf("%d\n", dp[lenS2-1]);
}
return 0;
}

写的太烂,下面是学姐的代码:



#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
#define max_n 1000
#define max_m 1000
int dp[max_n][max_m];
char s[max_n],t[max_m];
int main()
{
while(scanf("%s%s",s,t)!=EOF)
{
int n=strlen(s);
int m=strlen(t);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(s[i]==t[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

再写一个:

试试即记忆化,又空间优化一下:等一会吧。。。。。。让我想想。。。

D - Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. LCS POJ 1458 Common Subsequence

    题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; ( ...

  7. Common Subsequence LCS

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F 题目: Description A subsequ ...

  8. poj 1458 Common Subsequence

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 46387   Accepted: 19 ...

  9. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  10. Common Subsequence(dp)

    Common Subsequence Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 951  Solved: 374 Description A subs ...

随机推荐

  1. 调magento自定义模板发邮件

    1. 设置邮件模板 <global> <template> <email> <custom_email_template1 module="Samp ...

  2. 楼天城楼教主的acm心路历程(作为励志用)

    楼主个人博客:小杰博客 利用假期空暇之时,将这几年GCJ,ACM,TopCoder 參加的一些重要比赛作个 回顾.昨天是GCJ2006 的回顾,今天时间上更早一些吧,我如今还清晰记得3 年 前,我刚刚 ...

  3. 关于new 和delete

    这是百度知道上的答案,感觉讲的很生动形象,接下来要搞清楚的是new是关键字还是函数,new可以重载吗? 你想弄懂这个问题,首先你要弄清楚数据的3种存储方式. 1.静态区: 全局变量. 2.堆: 程序执 ...

  4. OpenCV学习(1)OpenCV简介

    简介 OpenCV的全称是:Open Source Computer Vision Library,OpenCV是一个开源的跨平台的计算机视觉库,可以运行在Linux.Windows和Mac OS操作 ...

  5. mysql自定义循环函数

    FUNCTION deyes.f_getSplitStringByIndex1_8(stringIn text, delimiter varchar(10), indexIn int) RETURNS ...

  6. Java定时器:Timer

    项目中往往会遇到需要定时的任务,例如订单,当用户在某个规定时间内没有操作订单时,订单状态将会发生改变. 那么在这种情况下,我们会用到定时器. 举例: import java.util.Timer; / ...

  7. HTML5学习笔记之客户端存储数据方法:localStorage(),sessionStorage()

    HTML5提供了两种在客户端存储数据的新方法: localStorage():没有时间限制的数据存储 sessionStorage():针对一个session的数据存储 下面的一个例子用localSt ...

  8. linux 环境操作faq 记录

    1. ubuntu adb 提示???? 找不到设备 这个问题不是一次两次了记录下,以后好找点. 问题:ubuntu下adb 不是别设备 http://blog.csdn.net/chychc/art ...

  9. Android使用VideoView播放网络视频

    Android支持播放网络上的视频.在播放网络上的视频时,牵涉到视频流的传输,往往有两种协议,一种是HTTP,一种是RTSP.这 两种协议最大的不同是,HTTP协议,不支持实时流媒体的播放,而RTSP ...

  10. git 配置文件

    设置记住密码(默认15分钟): git config --global credential.helper cache 如果想自己设置时间,可以这样做: git config credential.h ...