Goldbach's Conjecture

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5277    Accepted Submission(s):
2022

点我

Problem Description
Goldbach's Conjecture: For any even number n greater
than or equal to 4, there exists at least one pair of prime numbers p1 and p2
such that n = p1 + p2.
This conjecture has not been proved nor refused yet.
No one is sure whether this conjecture actually holds. However, one can find
such a pair of prime numbers, if any, for a given even number. The problem here
is to write a program that reports the number of all the pairs of prime numbers
satisfying the condition in the conjecture for a given even number.

A
sequence of even numbers is given as input. Corresponding to each number, the
program should output the number of pairs mentioned above. Notice that we are
interested in the number of essentially different pairs and therefore you should
not count (p1, p2) and (p2, p1) separately as two different pairs.

 
Input
An integer is given in each input line. You may assume
that each integer is even, and is greater than or equal to 4 and less than 2^15.
The end of the input is indicated by a number 0.
 
Output
Each output line should contain an integer number. No
other characters should appear in the output.
 
Sample Input
6
10
12
0
 
Sample Output
1
2
1
 #include <iostream>
using namespace std;
int a[];
int isprime()
{
int i,k,x;
for(i=;i<;i++)
{
for(k=;k<=i/;k++)
{
if(i%k==)
break;
}
if(k==i/+)
a[i]=;
else
a[i]=;
}
return ;
}
int main()
{
int x,i,j,count=;
isprime();
while(cin>>x&&x)
{
count=;
for(i=j=x/;i>=;i--,j++)
{
if(a[i]&&a[j])
{
count++;
}
}
cout<<count<<endl;
}
}
 

Goldbach's Conjecture(哥德巴赫猜想)的更多相关文章

  1. LightOJ 1259 Goldbach`s Conjecture (哥德巴赫猜想 + 素数筛选法)

    http://lightoj.com/volume_showproblem.php?problem=1259 题目大意:给你一个数n,这个数能分成两个素数a.b,n = a + b且a<=b,问 ...

  2. Goldbach's Conjecture POJ - 2262 线性欧拉筛水题 哥德巴赫猜想

    题意 哥德巴赫猜想:任一大于2的数都可以分为两个质数之和 给一个n 分成两个质数之和 线行筛打表即可 可以拿一个数组当桶标记一下a[i]  i这个数是不是素数  在线性筛后面加个装桶循环即可 #inc ...

  3. Goldbach`s Conjecture LightOJ - 1259 (素数打表 哥德巴赫猜想)

    题意: 就是哥德巴赫猜想...任意一个偶数 都可以分解成两个(就是一对啦)质数的加和 输入一个偶数求有几对.. 解析: 首先! 素数打表..因为 质数 + 质数 = 偶数 所以 偶数 - 质数 = 质 ...

  4. HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)

    Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...

  5. 【LightOJ1259】Goldbach`s Conjecture(数论)

    [LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...

  6. LightOJ1259 Goldbach`s Conjecture —— 素数表

    题目链接:https://vjudge.net/problem/LightOJ-1259 1259 - Goldbach`s Conjecture    PDF (English) Statistic ...

  7. Light oj-1259 - Goldbach`s Conjecture

                                                                                    1259 - Goldbach`s Co ...

  8. Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】

    Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...

  9. Goldbach’s Conjecture(信息学奥赛一本通 1622)

    [题目描述] 原题来自:Ulm Local,题面详见:POJ 2262 哥德巴赫猜想:任何大于 44 的偶数都可以拆成两个奇素数之和. 比如: 8=3+5 20=3+17=7+13 42=5+37=1 ...

随机推荐

  1. 【5】将服务部署到本机(Ubuntu14.04)

    首先,先将文件复制到指定的文件夹 我这里选择在/var下面新建一个www的文件夹来存放 复制BLOG文件夹的内容到www文件夹下 sudo cp -r /home/jakeychen/Jakey/Bl ...

  2. Java 遍历Map

    Set<Map.Entry<String, String>> aSet = map.entrySet(); Iterator<Map.Entry<String, S ...

  3. USBASP下载线制作教程

  4. 汇编写函数:关于PUBLIC和EXTRN的区别

    PUBLIC伪指令的格式:PUBLIC 标识符,标识符... 该伪指令告诉汇编程序放在PUBLIC之后的标识符(本模块的定义的)可为其他模块使用,这些标识符可以是变量.标号或者过程名.言外之意,它不仅 ...

  5. 如何在WPF程序中使用ArcGIS Engine的控件

    原文 http://www.gisall.com/html/47/122747-4038.html WPF(Windows Presentation Foundation)是美国微软公司推出.NET ...

  6. mysql 只给更新表的某个字段的授权

    mysql> create view v_Procuct as select sn,name from Product; Query OK, 0 rows affected (0.01 sec) ...

  7. Unix/Linux环境C编程入门教程(36) 初识shell

     1.什么是Shell Shell是位为一组,依次代表文件拥有者.同组用户和其他用户的存取权限.通常文件共有3个权限,"r"表示只读:"w"表示可写:&qu ...

  8. k-d Tree in TripAdvisor

    Today, TripAdvisor held a tech talk in Columbia University. The topic is about k-d Tree implemented ...

  9. 不可或缺的企业OA面临问题,以及解决建议 软件定制开发 森普演示平台

    ---恢复内容开始--- 随着信息时代的来临,企业管理也相应的信息化,各种管理软件相继而出,各行各业的信息化有过成功,也有过失败(注:是以该项目是否达到用户的预期目标而言).据统计在信息化失败的案例中 ...

  10. 监控父元素里面子元素内容变化 DOMSubtreeModified

    1监控ul的li的变化情况,并实时输出li的长度 布局: <ul id="isSelected"></ul> <span id="modal ...