Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序。
运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world。
1. 首先确认启动的正常:运行 start-all.sh
2. 执行jps命令检查:NameNode,DateNode,SecondaryNameNode,ResourceManager,NodeManager是否已经启动正常。这里我遇到了一个问题,NodeManager没有正常启动。错误信息如下:
2014-01-07 13:46:21,442 FATAL org.apache.hadoop.yarn.server.nodemanager.containermanager.AuxServices: Failed to initialize mapreduce.shuffle
java.lang.IllegalArgumentException: The ServiceName: mapreduce.shuffle set in yarn.nodemanager.aux-services is invalid.The valid service name should only contain a-zA-Z0-9_ and can not start with numbers
at com.google.common.base.Preconditions.checkArgument(Preconditions.java:88)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.AuxServices.serviceInit(AuxServices.java:98)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.service.CompositeService.serviceInit(CompositeService.java:108)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.serviceInit(ContainerManagerImpl.java:218)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.service.CompositeService.serviceInit(CompositeService.java:108)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.serviceInit(NodeManager.java:188)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.initAndStartNodeManager(NodeManager.java:338)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.main(NodeManager.java:386)
经过检查,是配置文件中有点错误,请修改yarn-site.xml文件,更改为如下内容(原因不明)
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
3. 准备数据:在hadoop文件系统中增加input/file1.txt和input/file2.txt
[root@dbserver mapreduce]# hadoop fs -ls /input
Found items
-rw-r--r-- root supergroup -- : /input/file1.txt
-rw-r--r-- root supergroup -- : /input/file2.txt
[root@dbserver mapreduce]# hadoop fs -cat /input/file1.txt
Hello World
[root@dbserver mapreduce]# hadoop fs -cat /input/file2.txt
Hello Hadoop
4. 例子程序的位置在:/hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar
hadoop jar ./hadoop-mapreduce-examples-2.2..jar wordcount /input /output
画面输出内容
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
// :: INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
// :: INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
// :: INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
// :: INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
// :: INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
// :: INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
// :: INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
// :: INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
// :: INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1389074273046_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1389074273046_0001 to ResourceManager at localhost/127.0.0.1:
// :: INFO mapreduce.Job: The url to track the job: http://dbserver:8088/proxy/application_1389074273046_0001/
// :: INFO mapreduce.Job: Running job: job_1389074273046_0001
// :: INFO mapreduce.Job: Job job_1389074273046_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1389074273046_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
5. 查看运行结果:
[root@dbserver mapreduce]# hadoop fs -ls /output
Found items
-rw-r--r-- root supergroup -- : /output/_SUCCESS
-rw-r--r-- root supergroup -- : /output/part-r-
[root@dbserver mapreduce]# hadoop fs -cat /output/part-r-
Hadoop
Hello
World
Hadoop学习历程(四、运行一个真正的MapReduce程序)的更多相关文章
- hadoop学习笔记:运行wordcount对文件字符串进行统计案例
文/朱季谦 我最近使用四台Centos虚拟机搭建了一套分布式hadoop环境,简单模拟了线上上的hadoop真实分布式集群,主要用于业余学习大数据相关体系. 其中,一台服务器作为NameNode,一台 ...
- [Hadoop] Hadoop学习历程 [持续更新中…]
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成 ...
- Hadoop学习笔记四
一.fsimage,edits和datanode的block在本地文件系统中位置的配置 fsimage:hdfs-site.xml中的dfs.namenode.name.dir 值例如file:// ...
- Hadoop学习之路(二十七)MapReduce的API使用(四)
第一题 下面是三种商品的销售数据 要求:根据以上数据,用 MapReduce 统计出如下数据: 1.每种商品的销售总金额,并降序排序 2.每种商品销售额最多的三周 第二题:MapReduce 题 现有 ...
- Hadoop学习笔记:使用Mrjob框架编写MapReduce
1.mrjob介绍 一个通过mapreduce编程接口(streamming)扩展出来的Python编程框架. 2.安装方法 pip install mrjob,略.初学,叙述的可能不是很细致,可以加 ...
- Linux环境下部署完JDK后运行一个简单的Java程序
前言 前一篇文章详细讲解了如何在Windows环境下安装虚拟机+Linux系统,并且成功部署了JDK. 不过部署完JDK之后,我们判断部署是否成功的依据是看"java -version&qu ...
- Hadoop学习之路(十五)MapReduce的多Job串联和全局计数器
MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实 ...
- Linux系统学习笔记之 1 一个简单的shell程序
不看笔记,长时间不用自己都忘了,还是得经常看看笔记啊. 一个简单的shell程序 shell结构 1.#!指定执行脚本的shell 2.#注释行 3.命令和控制结构 创建shell程序的步骤 第一步: ...
- 如何用Qt写一个同一时间只能运行一个实例的应用程序
http://blog.sina.com.cn/s/blog_6343941a0100nk2x.html 可以达到的目的: 1.应用只启动一个实例,依赖于QtNetwork模块 2.启动时向另一个实例 ...
随机推荐
- [SQL注入3]from_sqli_to_shell_II
[SQL注入1]这关学习盲注 ,这篇还有些东西没理透,后面搞明白了再修改. http://www.pentesterlab.com/exercises/from_sqli_to_shell_II/ 准 ...
- 转:Twitter.com在用哪些Javascript框架?
原文来自于:http://blog.jobbole.com/63964/ 我一直在研究twitter.com使用的一些UI框架.下面是这些框架的清单(大部分是Javascript框架).如果你发现有些 ...
- Mono Compatibility
The easiest way to describe what Mono currently supports is:Everything in .NET 4.5 except WPF, WWF, ...
- 自解压的方式创建VC++程序的打包
Walkthrough: Deploying a Visual C++ Application By Using the Visual C++ Redistributable Package Visu ...
- ISAP
跑的是比Dinic快辣. 更新:指针版.... #include<iostream> #include<cstdio> #include<cmath> #inclu ...
- S-Nim
http://acm.hdu.edu.cn/showproblem.php?pid=1536 SG经典题,不多说 // File Name: hdu1536.cpp // Author: bo_jwo ...
- CSS常用操作-分类
- JavaScript基础知识(学习笔记)
1. 在JavaScript中所有事物都是对象:字符串.数字.数组.日期等等2. 在JavaScript中,对象是拥有属性和方法的数据3. 属性是与对象相关的值,方法是能够在对象上执 ...
- 二十六个月Android学习工作总结
1.客户端的功能逻辑不难,UI界面也不难,但写UI花的时间是写功能逻辑的两倍. 2.写代码前的思考过程非常重要,即使在简单的功能,也需要在本子上把该功能的运行过程写出来. 3.要有自己的知识库,可以是 ...
- Java基础知识强化44:StringBuffer类之把数组拼接成指定格式的字符串的案例
1. 先看案例代码如下: package cn.itcast_07; /* * 把数组拼接成一个字符串 */ public class StringBufferTest2 { public stati ...