Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序。
运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world。
1. 首先确认启动的正常:运行 start-all.sh
2. 执行jps命令检查:NameNode,DateNode,SecondaryNameNode,ResourceManager,NodeManager是否已经启动正常。这里我遇到了一个问题,NodeManager没有正常启动。错误信息如下:
2014-01-07 13:46:21,442 FATAL org.apache.hadoop.yarn.server.nodemanager.containermanager.AuxServices: Failed to initialize mapreduce.shuffle
java.lang.IllegalArgumentException: The ServiceName: mapreduce.shuffle set in yarn.nodemanager.aux-services is invalid.The valid service name should only contain a-zA-Z0-9_ and can not start with numbers
at com.google.common.base.Preconditions.checkArgument(Preconditions.java:88)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.AuxServices.serviceInit(AuxServices.java:98)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.service.CompositeService.serviceInit(CompositeService.java:108)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.serviceInit(ContainerManagerImpl.java:218)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.service.CompositeService.serviceInit(CompositeService.java:108)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.serviceInit(NodeManager.java:188)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.initAndStartNodeManager(NodeManager.java:338)
at org.apache.hadoop.yarn.server.nodemanager.NodeManager.main(NodeManager.java:386)
经过检查,是配置文件中有点错误,请修改yarn-site.xml文件,更改为如下内容(原因不明)
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
3. 准备数据:在hadoop文件系统中增加input/file1.txt和input/file2.txt
[root@dbserver mapreduce]# hadoop fs -ls /input
Found items
-rw-r--r-- root supergroup -- : /input/file1.txt
-rw-r--r-- root supergroup -- : /input/file2.txt
[root@dbserver mapreduce]# hadoop fs -cat /input/file1.txt
Hello World
[root@dbserver mapreduce]# hadoop fs -cat /input/file2.txt
Hello Hadoop
4. 例子程序的位置在:/hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar
hadoop jar ./hadoop-mapreduce-examples-2.2..jar wordcount /input /output
画面输出内容
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
// :: INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
// :: INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
// :: INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
// :: INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
// :: INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
// :: INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
// :: INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
// :: INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
// :: INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1389074273046_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1389074273046_0001 to ResourceManager at localhost/127.0.0.1:
// :: INFO mapreduce.Job: The url to track the job: http://dbserver:8088/proxy/application_1389074273046_0001/
// :: INFO mapreduce.Job: Running job: job_1389074273046_0001
// :: INFO mapreduce.Job: Job job_1389074273046_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1389074273046_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
5. 查看运行结果:
[root@dbserver mapreduce]# hadoop fs -ls /output
Found items
-rw-r--r-- root supergroup -- : /output/_SUCCESS
-rw-r--r-- root supergroup -- : /output/part-r-
[root@dbserver mapreduce]# hadoop fs -cat /output/part-r-
Hadoop
Hello
World
Hadoop学习历程(四、运行一个真正的MapReduce程序)的更多相关文章
- hadoop学习笔记:运行wordcount对文件字符串进行统计案例
文/朱季谦 我最近使用四台Centos虚拟机搭建了一套分布式hadoop环境,简单模拟了线上上的hadoop真实分布式集群,主要用于业余学习大数据相关体系. 其中,一台服务器作为NameNode,一台 ...
- [Hadoop] Hadoop学习历程 [持续更新中…]
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成 ...
- Hadoop学习笔记四
一.fsimage,edits和datanode的block在本地文件系统中位置的配置 fsimage:hdfs-site.xml中的dfs.namenode.name.dir 值例如file:// ...
- Hadoop学习之路(二十七)MapReduce的API使用(四)
第一题 下面是三种商品的销售数据 要求:根据以上数据,用 MapReduce 统计出如下数据: 1.每种商品的销售总金额,并降序排序 2.每种商品销售额最多的三周 第二题:MapReduce 题 现有 ...
- Hadoop学习笔记:使用Mrjob框架编写MapReduce
1.mrjob介绍 一个通过mapreduce编程接口(streamming)扩展出来的Python编程框架. 2.安装方法 pip install mrjob,略.初学,叙述的可能不是很细致,可以加 ...
- Linux环境下部署完JDK后运行一个简单的Java程序
前言 前一篇文章详细讲解了如何在Windows环境下安装虚拟机+Linux系统,并且成功部署了JDK. 不过部署完JDK之后,我们判断部署是否成功的依据是看"java -version&qu ...
- Hadoop学习之路(十五)MapReduce的多Job串联和全局计数器
MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实 ...
- Linux系统学习笔记之 1 一个简单的shell程序
不看笔记,长时间不用自己都忘了,还是得经常看看笔记啊. 一个简单的shell程序 shell结构 1.#!指定执行脚本的shell 2.#注释行 3.命令和控制结构 创建shell程序的步骤 第一步: ...
- 如何用Qt写一个同一时间只能运行一个实例的应用程序
http://blog.sina.com.cn/s/blog_6343941a0100nk2x.html 可以达到的目的: 1.应用只启动一个实例,依赖于QtNetwork模块 2.启动时向另一个实例 ...
随机推荐
- ASP.NET 表单认证与角色授权
参考 : http://hi.baidu.com/iykqqlpugocfnqe/item/e132329bdea22acbb6253105 ASP.NET中处理请求的流程图 http://www. ...
- JAVA接口示例
总感觉有点虚,但慢慢找到感觉了.将对象放进数组里,这就比较深入了. interface drawTest{ public void draw(); public void doAnyThing(); ...
- Android listview局部刷新和模拟应用下载(zhu)
在android开发中,listview是比较常用的一个组件,在listview的数据需要更新的时候,一般会用notifyDataSetChanged()这个函数,但是它会更新listview中所有可 ...
- Bug解决过程复盘
反思了下,解决问题无外乎3w1h when where who how 就是查询出来的事情多了,现在不知道哪个地方出问题,应该根据日志一步一步梳理,查看每一步的输出结果是否与预期一致 顺藤摸瓜 觉得不 ...
- yum 使用说明
linux如何安装yum 使用YUM来安装软件,就可以不用去到处找依赖关系的RPM了.很方便. 第一步:安装yum 第二步:下载createrepo包并安装 下载地址: ftp://195.220. ...
- linux开源论坛
开源资源: 开源http://oss.org.cn/?action-news http://www.lupaworld.com/proj.php http://www.10pig.cn/linux/o ...
- 程序设计实习MOOC / 继承和派生——编程作业 第五周程序填空题1
描述 写一个MyString 类,使得下面程序的输出结果是: 1. abcd-efgh-abcd- 2. abcd- 3. 4. abcd-efgh- 5. efgh- 6. c 7. abcd- 8 ...
- Ubuntu 14.04 64位安装Android Studio 和 genymotion (上)
先说下,Ubuntu 上安装Android Studio真是一路坑阿,一路坑阿,加上天 朝 防火墙挡着,折腾了快一天才弄好阿 找了n多教程,md不是抄的就是转的,而且都没说清楚具体咋装阿,一个图一个 ...
- A - Network of Schools - poj 1236(求连通分量)
题意:学校有一些单向网络,现在需要传一些文件,1,求最少需要向几个学校分发文件才能让每个学校都收到,2,需要添加几条网络才能在任意一个学校分发都可以传遍所有学校. 分析:首先应该求出来连通分量,进行缩 ...
- 简易封装一个带有占位文字的TextView
在实际iOS应用开发中我们经常会用到类似于下图所示的界面,即带有占位文字的文本框: