Happy 2004(快速幂+乘法逆元)
Happy 2004
问题描述 :
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
输入:
A test case of X = 0 indicates the end of input, and should not be processed.
输出:
样例输入:
1
10000
0
样例输出:
6
10
设S(x)表示x的因子和。则题目求为:S(2004^X)mod 29
因子和S是积性函数,即满足性质1。
性质1 :如果 gcd(a,b)=1 则 S(a*b)= S(a)*S(b)
2004^X=4^X * 3^X *167^X
S(2004^X)=S(2^(2X)) * S(3^X) * S(167^X)
性质2 :如果 p 是素数 则 S(p^X)=1+p+p^2+…+p^X = (p^(X+1)-1)/(p-1)
因此:S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (167^(X+1)-1)/166
167%29 == 22
S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (22^(X+1)-1)/21
性质3 :(a*b)/c %M= a%M * b%M * inv(c)
其中inv(c)即满足 (c*inv(c))%M=1的最小整数,这里M=29
则inv(1)=1,inv(2)=15,inv(22)=15
有上得:
S(2004^X)=(2^(2X+1)-1) * (3^(X+1)-1)/2 * (22^(X+1)-1)/21
=(2^(2X+1)-1) * (3^(X+1)-1)*15 * (22^(X+1)-1)*18
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
const double eps=1e-;
int p=;
LL pow_mod(LL x,LL n)
{
LL res=;
while(n>)
{
if(n&) res=res*x%p;
x=x*x%p;
n>>=;
}
return res;
}
int main()
{
LL x,i;
while(cin>>x&&x)
{
int a=pow_mod(,*x+);
int b=pow_mod(,x+);
int c=pow_mod(,x+);
int s=((a-)*(b-)*(c-)**)%;
cout<<s<<endl;
} }
Happy 2004(快速幂+乘法逆元)的更多相关文章
- hdu-4990 Reading comprehension(快速幂+乘法逆元)
题目链接: Reading comprehension Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式
1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...
- hdu-5690 All X(快速幂+乘法逆元)
题目链接: All X Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Pro ...
- HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU4869:Turn the pokers(快速幂求逆元+组合数)
题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]
是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...
随机推荐
- Core Data入门-备用
简介 Core Data是iOS5之后才出现的一个框架,它提供了对象-关系映射(ORM)的功能,即能够将OC对象转化成数据,保存在SQLite数据库文件中,也能够将保存在数据库中的数据还原成OC对象. ...
- 《Programming WPF》翻译 第3章 4.我们进行到哪里了?
原文:<Programming WPF>翻译 第3章 4.我们进行到哪里了? 控件是由应用程序创建的块.它们描述了用户用来交互的界面特征.控件提供了行为,依赖样式和模板来表示一个外观.输入 ...
- hdu 1853 最小费用流好题 环的问题
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others) Tota ...
- UML--核心元素之业务实体
如果说参与者和用例描述了我们在这个问题领域中达到什么样的目标,那么业务实体就描述了我们使用什么来达到业务目标以及通过什么来记录这个业务目标. 如果把问题领域比喻成一幢大楼的话,业务实体就是构成这幢大楼 ...
- < welcome > 一起学习,进步,分享。
现在时间:2014-3-24 hello world my blog. 第一次做博客,欢迎各路朋友指教.慢慢的分享学习到得东西,本人目前正在做IOS,也在学习数据库简单地应用. 作为一个IOS开发者, ...
- Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum
这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...
- 学艺不精,又被shell的管道给坑了
我用过bash shell,而且时间不短了.但我从来没学过shell,至少没有像C++这么认真去学.平时写些基本的脚本没问题,不懂也可以google.百度.可在2014最后一天,掉坑里了. 其实脚本也 ...
- vmware虚拟机迁移系统到其它磁盘(xjl456852原创)
有时我们将vmware安装的系统放在了磁盘空间比较小的盘里,后来磁盘空间不够用了,我们需要将文件移动到其它磁盘.腾出这个磁盘的空间. 我安装的系统有10个,总占空间大小170多GB.需要从D盘迁移到G ...
- MyWidget【简单自制控件】
#coding=gbk from PyQt4 import QtGui,QtCore import random class MyWidget(QtGui.QWidget): def __init__ ...
- python学习之路-5 基础进阶篇
本篇涉及内容 双层装饰器字符串格式化 双层装饰器 装饰器基础请点我 有时候一个功能需要有2次认证的时候就需要用到双层装饰器了,下面我们来通过一个案例详细介绍一下双层装饰器: 执行顺序:自上而下 解释顺 ...