package com.my.hadoop.mapreduce.dataformat;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import com.my.hadoop.common.Configs;

/**
 * hadoop的序列化
 * @author yao
 *
 */
public class DataCount {

static class DTMap extends Mapper<LongWritable, Text, Text, DataBean>{
        DataBean dataBean = null;
        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
            String[] fields = value.toString().split("\t");
            String telNo = fields[1];
            long upPayLoad = Long.parseLong(fields[8]);
            long downPayLoad = Long.parseLong(fields[9]);
            dataBean = new DataBean(telNo, upPayLoad, downPayLoad);
            context.write(new Text(telNo), dataBean);
        }
    }
    
    static class DTReduce extends Reducer<Text, DataBean, Text, DataBean>{
        @Override
        public void reduce(Text key, Iterable<DataBean> dataBeans, Context context) throws IOException ,InterruptedException {
            long upPayLoad = 0;
            long downPayLoad = 0;
            for (DataBean dataBean : dataBeans) {
                upPayLoad += dataBean.getUpPayLoad();
                downPayLoad += dataBean.getDownPayLoad();
            }
            DataBean dataBean = new DataBean("", upPayLoad, downPayLoad);
            context.write(key, dataBean);
        }
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = Configs.getConfigInstance();
        
        String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (paths.length != 2) {
            System.err.println("Usage: " + DataCount.class.getName() + " <in> <out>");
            System.exit(2);
        }
        
        Job job = Job.getInstance(conf, DataCount.class.getSimpleName());
        job.setJarByClass(DataCount.class);                                //设置main函数所在的类
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        job.setMapperClass(DTMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataBean.class);
        
        job.setReducerClass(DTReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DataBean.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);                //等待MapReduce执行完成并打印作业进度详情
        
    }

}

/**
 * 实现Writable接口,重写Write方法和readFields方法,严格按字段顺序进行写入写出
 * @author yao
 *
 */
class DataBean implements Writable {

private String telNo;
    private long upPayLoad;
    private long downPayLoad;
    private long totalPayLoad;
    
    public DataBean(){
        
    }
    
    public DataBean(String telNo, long upPayLoad, long downPayLoad) {
        super();
        this.telNo = telNo;
        this.upPayLoad = upPayLoad;
        this.downPayLoad = downPayLoad;
        this.totalPayLoad = upPayLoad + downPayLoad;
    }

@Override
    public void readFields(DataInput in) throws IOException {
        this.telNo = in.readUTF();
        this.upPayLoad = in.readLong();
        this.downPayLoad = in.readLong();
        this.totalPayLoad = in.readLong();
    }

@Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(telNo);
        out.writeLong(upPayLoad);
        out.writeLong(downPayLoad);
        out.writeLong(totalPayLoad);
    }

@Override
    public String toString() {
        return this.telNo+"\t"+this.upPayLoad+"\t"+this.downPayLoad+"\t"+this.totalPayLoad;
    }

public String getTelNo() {
        return telNo;
    }

public void setTelNo(String telNo) {
        this.telNo = telNo;
    }

public long getUpPayLoad() {
        return upPayLoad;
    }

public void setUpPayLoad(long upPayLoad) {
        this.upPayLoad = upPayLoad;
    }

public long getDownPayLoad() {
        return downPayLoad;
    }

public void setDownPayLoad(long downPayLoad) {
        this.downPayLoad = downPayLoad;
    }

public long getTotalPayLoad() {
        return totalPayLoad;
    }

public void setTotalPayLoad(long totalPayLoad) {
        this.totalPayLoad = totalPayLoad;
    }

}

hadoop2.2.0 MapReduce的序列化的更多相关文章

  1. hadoop2.2.0 MapReduce求和并排序

    javabean必须实现WritableComparable接口,并实现该接口的序列化,反序列话和比较方法 package com.my.hadoop.mapreduce.sort; import j ...

  2. hadoop2.2.0 MapReduce分区

    package com.my.hadoop.mapreduce.partition; import java.util.HashMap;import java.util.Map; import org ...

  3. 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置

    简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...

  4. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 【hadoop2.6.0】用C++ 编写mapreduce

    hadoop通过hadoop streaming 来实现用非Java语言写的mapreduce代码. 对于一个一点Java都不会的我来说,这真是个天大的好消息. 官网上hadoop streaming ...

  7. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  8. Hadoop-2.2.0 (传 hadoop-2.2.0.tar.gz)

    配置hadoop 2.1 上传hadoop包 2.2 解压hadoop包 首先在根目录下创建一个cloud目录 mkdir /cloud tar -zxvf hadoop-2.2.0.tar.gz - ...

  9. Hadoop2.2.0安装过程记录

    1    安装环境1.1    客户端1.2    服务端1.3    安装准备    2    操作系统安装2.1.1    BIOS打开虚拟化支持2.1.2    关闭防火墙2.1.3    安装 ...

随机推荐

  1. Linux/UNIX套接字连接

    套接字连接 套接字是一种通信机子.凭借这样的机制.客户/server系统的开发工作既能够在本地单机上进行.也能够夸网络进行. 套接字的创建和使用与管道是有差别的.由于套接字明白地将客户和server区 ...

  2. 基于 Java 2 运行时安全模型的线程协作--转

    在 Java 2 之前的版本,运行时的安全模型使用非常严格受限的沙箱模型(Sandbox).读者应该熟悉,Java 不受信的 Applet 代码就是基于这个严格受限的沙箱模型来提供运行时的安全检查.沙 ...

  3. javascript加载图片获取图片尺寸信息方法

    如果你遇到不方便从服务器取图片尺寸信息的话,用下面代码就很方便了. // 更新: // 05.27: 1.保证回调执行顺序:error > ready > load:2.回调函数this指 ...

  4. Android项目中如何用好构建神器Gradle?(转)

    最近在忙团队并行开发的事情,主要是将各个团队的代码分库,一方面可以降低耦合,为后面模块插件化做铺垫,另一方面采用二进制编译,可以加快编译速度.分库遇到了一些问题,很多都要通过Gradle脚本解决,所以 ...

  5. Duplicate Protocol Definition of DTService Is Ignored

    1.  很多的情况是由于重复导入Protocol导致的. 例如:import "Protocol1.h" import "Protocol1.h" 在同一项目中 ...

  6. Volley 百财帮封装

    Activity public class MainActivity extends Activity implements OnClickListener {     private Context ...

  7. oracle的一知半解

    这里只讲第一次开发运用oracle数据库的.net程序遇到问题: 1.程序与oracle数据库在同一台的服务器,貌似设置好连接字符串就可以直接访问( 需要主要的问题: 字符串格式:Data Sourc ...

  8. ICSharpCode.SharpZipLib实现压缩解压缩

    最近,在项目中经常需要处理压缩和解压缩文件的操作.经过查找,发现了ICSharpCode.SharpZipLib.dll ,这是一个完全由c#编写的Zip, GZip.Tar . BZip2 类库,可 ...

  9. Java的native关键字---JAVA下调用其他语言的关键词

    今天研究Java基础类库,Object类的时候,发现了一个关键字:native 咦?这是个什么东东?它认识我,我可不认识它! 嘿嘿,没关系,baidu一下. java native关键字 一. 什么是 ...

  10. VM下Linux网卡丢失(pcnet32 device eth0 does not seem to be ...)解决方案

    系统启动日志:Bringing up interface eth0: pcnet32 device eth0 does not seepresent, delaying initialization. ...