package com.my.hadoop.mapreduce.dataformat;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import com.my.hadoop.common.Configs;

/**
 * hadoop的序列化
 * @author yao
 *
 */
public class DataCount {

static class DTMap extends Mapper<LongWritable, Text, Text, DataBean>{
        DataBean dataBean = null;
        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
            String[] fields = value.toString().split("\t");
            String telNo = fields[1];
            long upPayLoad = Long.parseLong(fields[8]);
            long downPayLoad = Long.parseLong(fields[9]);
            dataBean = new DataBean(telNo, upPayLoad, downPayLoad);
            context.write(new Text(telNo), dataBean);
        }
    }
    
    static class DTReduce extends Reducer<Text, DataBean, Text, DataBean>{
        @Override
        public void reduce(Text key, Iterable<DataBean> dataBeans, Context context) throws IOException ,InterruptedException {
            long upPayLoad = 0;
            long downPayLoad = 0;
            for (DataBean dataBean : dataBeans) {
                upPayLoad += dataBean.getUpPayLoad();
                downPayLoad += dataBean.getDownPayLoad();
            }
            DataBean dataBean = new DataBean("", upPayLoad, downPayLoad);
            context.write(key, dataBean);
        }
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = Configs.getConfigInstance();
        
        String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (paths.length != 2) {
            System.err.println("Usage: " + DataCount.class.getName() + " <in> <out>");
            System.exit(2);
        }
        
        Job job = Job.getInstance(conf, DataCount.class.getSimpleName());
        job.setJarByClass(DataCount.class);                                //设置main函数所在的类
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        job.setMapperClass(DTMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataBean.class);
        
        job.setReducerClass(DTReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DataBean.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);                //等待MapReduce执行完成并打印作业进度详情
        
    }

}

/**
 * 实现Writable接口,重写Write方法和readFields方法,严格按字段顺序进行写入写出
 * @author yao
 *
 */
class DataBean implements Writable {

private String telNo;
    private long upPayLoad;
    private long downPayLoad;
    private long totalPayLoad;
    
    public DataBean(){
        
    }
    
    public DataBean(String telNo, long upPayLoad, long downPayLoad) {
        super();
        this.telNo = telNo;
        this.upPayLoad = upPayLoad;
        this.downPayLoad = downPayLoad;
        this.totalPayLoad = upPayLoad + downPayLoad;
    }

@Override
    public void readFields(DataInput in) throws IOException {
        this.telNo = in.readUTF();
        this.upPayLoad = in.readLong();
        this.downPayLoad = in.readLong();
        this.totalPayLoad = in.readLong();
    }

@Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(telNo);
        out.writeLong(upPayLoad);
        out.writeLong(downPayLoad);
        out.writeLong(totalPayLoad);
    }

@Override
    public String toString() {
        return this.telNo+"\t"+this.upPayLoad+"\t"+this.downPayLoad+"\t"+this.totalPayLoad;
    }

public String getTelNo() {
        return telNo;
    }

public void setTelNo(String telNo) {
        this.telNo = telNo;
    }

public long getUpPayLoad() {
        return upPayLoad;
    }

public void setUpPayLoad(long upPayLoad) {
        this.upPayLoad = upPayLoad;
    }

public long getDownPayLoad() {
        return downPayLoad;
    }

public void setDownPayLoad(long downPayLoad) {
        this.downPayLoad = downPayLoad;
    }

public long getTotalPayLoad() {
        return totalPayLoad;
    }

public void setTotalPayLoad(long totalPayLoad) {
        this.totalPayLoad = totalPayLoad;
    }

}

hadoop2.2.0 MapReduce的序列化的更多相关文章

  1. hadoop2.2.0 MapReduce求和并排序

    javabean必须实现WritableComparable接口,并实现该接口的序列化,反序列话和比较方法 package com.my.hadoop.mapreduce.sort; import j ...

  2. hadoop2.2.0 MapReduce分区

    package com.my.hadoop.mapreduce.partition; import java.util.HashMap;import java.util.Map; import org ...

  3. 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置

    简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...

  4. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 【hadoop2.6.0】用C++ 编写mapreduce

    hadoop通过hadoop streaming 来实现用非Java语言写的mapreduce代码. 对于一个一点Java都不会的我来说,这真是个天大的好消息. 官网上hadoop streaming ...

  7. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  8. Hadoop-2.2.0 (传 hadoop-2.2.0.tar.gz)

    配置hadoop 2.1 上传hadoop包 2.2 解压hadoop包 首先在根目录下创建一个cloud目录 mkdir /cloud tar -zxvf hadoop-2.2.0.tar.gz - ...

  9. Hadoop2.2.0安装过程记录

    1    安装环境1.1    客户端1.2    服务端1.3    安装准备    2    操作系统安装2.1.1    BIOS打开虚拟化支持2.1.2    关闭防火墙2.1.3    安装 ...

随机推荐

  1. apache 配置https(转)

    主要讲述在windows下apache配置SSL以实现http转换为https SSL: SSl是为Http传输提供安全的协议,通过证书认证来确保客户端和网站服务器之间的数据是安全.也就是说在SSL下 ...

  2. Sandcastle Help File Builder使用教程

    Sandcastle Help File Builder相信很多的园友用过,小弟我最近因为工作原因需要生成公司的一套SDK的帮助文档,因此找了一些资料,发现网上的资料很多,但是都不怎么完全,有些只是随 ...

  3. python的运算符

    #coding=utf-8#"+"两个对象相加#两个数字相加a=7+8print a #两个字符串相加b="GOOD"+"JOB"print ...

  4. 使用HighCharts实现实时数据展示

    在众多的工业控制系统领域常常会实时采集现场的温度.压力.扭矩等数据,这些数据对于监控人员进行现场态势感知.进行未来趋势预测具有重大指导价值.工程控制人员如果只是阅读海量的数据报表,对于现场整个态势的掌 ...

  5. 多层架构+MVC+EF+AUTOFAC+AUTOMAPPER

    最近使用ligerui搭建了一个简单的教务管理demo,将重要的地方记录,也希望能帮到有这方面需要园友. 一.目录 1.多层架构+MVC+EF+AUTOFAC+AUTOMAPPER: 2.MVC中验证 ...

  6. Namespace declaration statement has to be the very first

    Namespace declaration statement has to be the very first statement in the script 我新建了一个Homea模块,并把Hom ...

  7. 关于Adobe Flash 11.3 引起的火狐使用问题

    Adobe Flash 更新到11.3之后,为火狐引入Flash沙盒安全模式,但同时,又造成了部分兼容性问题,导致 Windows vista及 Windows 7上部分火狐崩溃,并致使一些使用Fla ...

  8. cocos2d-x创建新项目模板

    1.起因 长期使用项目中自带的HelloWorldScene来创建模板工程,不知大家有木有感到厌烦? 我是个懒人,所以就弄了个新的模板工程.这样最起码可以不用每次都把HelloWorldScene删掉 ...

  9. thinkphp M 和模板用法

    <?phpnamespace Home\Controller;use Think\Controller;class IndexController extends Controller { pu ...

  10. seo初学

    对前端而言,做网站采用扁平式结构:控制网页链接数量,不能太少,当然也不能太多:其次采用扁平的目录层次,不能超过3次:三:导航优化,最好是文字,如果是图片的话,alt和title必须添加. 面包屑导航: ...