Let us consider sets of positive integers less than or equal to n. Note that all elements of a set are different. Also note that the order of elements doesnt matter, that is, both {3, 5, 9} and {5, 9, 3} mean the same set.

       Specifying the number of set elements and their sum to be k and s, respectively, sets satisfying the conditions are limited. When n = 9, k = 3 and s = 23, {6, 8, 9} is the only such set. There may be more than one such set, in general, however. When n = 9, k = 3 and s = 22, both {5, 8, 9} and {6, 7, 9} are possible.
       You have to write a program that calculates the number of the sets that satisfy the given conditions.
Input
The input consists of multiple datasets. The number of datasets does not exceed 100.
   Each of the datasets has three integers n, k and s in one line, separated by a space. You may assume 1 ≤ n ≤ 20, 1 ≤ k ≤ 10 and 1 ≤ s ≤ 155.
The end of the input is indicated by a line containing three zeros.
Output
The output for each dataset should be a line containing a single integer that gives the number of the sets that satisfy the conditions. No other characters should appear in the output.
    You can assume that the number of sets does not exceed 231 − 1.
Sample Input
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
Sample Output
1
2
0
20
1542
5448
1
0
0
程序分析:这种题目,一看就知道思路,就是枚举法来做,可是有那么多种情况,N!种,怎么都超时了,可是我们也要注意到一种题目的标志,就是状态压缩,对于这类题目,n一般都是20,而这个题就是20,而且完全符合状态压缩,虽然这个题有dp 的解法,可是状态压缩已经足以解决了。
程序代码:
#include<iostream>
using namespace std;
int a[];
int A[];
int ans=;
void dfs(int n,int cur){
if(cur==a[]){
int sum=;
for(int i=;i<a[];i++){
sum+=A[i];
}
if(sum==a[])ans++;
}
int s=;
if(cur!=)s=A[cur-]+;
for(int i=s;i<=n;i++){
A[cur]=i;
dfs(n,cur+);
}
}
int main(){
while(cin>>a[]>>a[]>>a[]&&a[]+a[]+a[]){
ans=;
dfs(a[],);
cout<<ans<<endl;
}
return ;
}


您的朋友 陈春辉 为这封邮件插入了背景音乐 - 下载  播放
 
播放器加载中...
正在发送...
 
此邮件已成功发送。再回一封
 

Aizu 1335 Eequal sum sets的更多相关文章

  1. Eequal sum sets

    Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...

  2. D.6661 - Equal Sum Sets

    Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...

  3. UvaLive 6661 Equal Sum Sets (DFS)

    Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...

  4. UvaLive6661 Equal Sum Sets dfs或dp

    UvaLive6661 PDF题目 题意:让你用1~n中k个不同的数组成s,求有多少种组法. 题解: DFS或者DP或打表. 1.DFS 由于数据范围很小,直接dfs每种组法统计个数即可. //#pr ...

  5. Equal Sum Sets

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=49406 题意: 输入n,k,s,求在不小于n的数中找出k个不同的数 ...

  6. UVALive 6661 Equal Sum Sets

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. [UVALive 6661 Equal Sum Sets] (dfs 或 dp)

    题意: 求从不超过 N 的正整数其中选取 K 个不同的数字,组成和为 S 的方法数. 1 <= N <= 20  1 <= K<= 10  1 <= S <= 15 ...

  8. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  9. Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解

    Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. Romantic(裸扩展欧几里德)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. Linux vsftpd服务配置具体解释

    [背景] 近日.一朋友dominoserver要进行升级.迁移,搭建了linux測试系统,也开启vsftpd服务,但是配置的ftp账号,程序无法正常下载附件. [问题跟踪] 通过ftpclient连接 ...

  3. Js用正则表达式验证字符串

    js 常用正则表达式表单验证代码 作者: 字体:[增加 减小] 类型:转载 js 常用正则表达式表单验证代码,以后大家就可以直接使用了. 正则表达式使用详解 简介 简单的说,正则表达式是一种可以用于模 ...

  4. pre标签 首行会自动换行解决方案

    利用pre标签可以 解决文本文档里面的空格及换行在页面上不显示的方案, 自行换行 加 white-space: pre-wrap; word-wrap: break-word; 英文字母换行 word ...

  5. input autocomplete 下拉提示+支持中文

    js 代码: $.getJSON("/Foreign/Getforeign_routeEndPoint", function (data) {            $(" ...

  6. Codeforces Round #316 (Div. 2C) 570C Replacement

    题目:Click here 题意:看一下题目下面的Note就会明白的. 分析:一开始想的麻烦了,用了树状数组(第一次用)优化,可惜没用. 直接判断: #include <bits/stdc++. ...

  7. 如何隐藏DLL中,导出函数的名称?

    一.引言 很多时候,我们写了一个Dll,不希望别人通过DLL查看工具,看到我们的导出函数名称.可以通过以下步骤实现: 1. 在def函数中做如下定义: LIBRARY EXPORTS HideFunc ...

  8. Oracle Hint用法总结

    1. /*+ALL_ROWS*/ 表明对语句块选择基于开销的优化方法,并获得最佳吞吐量,使资源消耗最小化. 例如: SELECT /*+ALL+_ROWS*/ EMP_NO,EMP_NAM,DAT_I ...

  9. PHP学习笔记14-操作session

    PHP会话管理图: 创建index: <?php /** * Created by PhpStorm. * User: Administrator * Date: 2015/7/2 * Time ...

  10. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...