Let us consider sets of positive integers less than or equal to n. Note that all elements of a set are different. Also note that the order of elements doesnt matter, that is, both {3, 5, 9} and {5, 9, 3} mean the same set.

       Specifying the number of set elements and their sum to be k and s, respectively, sets satisfying the conditions are limited. When n = 9, k = 3 and s = 23, {6, 8, 9} is the only such set. There may be more than one such set, in general, however. When n = 9, k = 3 and s = 22, both {5, 8, 9} and {6, 7, 9} are possible.
       You have to write a program that calculates the number of the sets that satisfy the given conditions.
Input
The input consists of multiple datasets. The number of datasets does not exceed 100.
   Each of the datasets has three integers n, k and s in one line, separated by a space. You may assume 1 ≤ n ≤ 20, 1 ≤ k ≤ 10 and 1 ≤ s ≤ 155.
The end of the input is indicated by a line containing three zeros.
Output
The output for each dataset should be a line containing a single integer that gives the number of the sets that satisfy the conditions. No other characters should appear in the output.
    You can assume that the number of sets does not exceed 231 − 1.
Sample Input
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
Sample Output
1
2
0
20
1542
5448
1
0
0
程序分析:这种题目,一看就知道思路,就是枚举法来做,可是有那么多种情况,N!种,怎么都超时了,可是我们也要注意到一种题目的标志,就是状态压缩,对于这类题目,n一般都是20,而这个题就是20,而且完全符合状态压缩,虽然这个题有dp 的解法,可是状态压缩已经足以解决了。
程序代码:
#include<iostream>
using namespace std;
int a[];
int A[];
int ans=;
void dfs(int n,int cur){
if(cur==a[]){
int sum=;
for(int i=;i<a[];i++){
sum+=A[i];
}
if(sum==a[])ans++;
}
int s=;
if(cur!=)s=A[cur-]+;
for(int i=s;i<=n;i++){
A[cur]=i;
dfs(n,cur+);
}
}
int main(){
while(cin>>a[]>>a[]>>a[]&&a[]+a[]+a[]){
ans=;
dfs(a[],);
cout<<ans<<endl;
}
return ;
}


您的朋友 陈春辉 为这封邮件插入了背景音乐 - 下载  播放
 
播放器加载中...
正在发送...
 
此邮件已成功发送。再回一封
 

Aizu 1335 Eequal sum sets的更多相关文章

  1. Eequal sum sets

    Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...

  2. D.6661 - Equal Sum Sets

    Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...

  3. UvaLive 6661 Equal Sum Sets (DFS)

    Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...

  4. UvaLive6661 Equal Sum Sets dfs或dp

    UvaLive6661 PDF题目 题意:让你用1~n中k个不同的数组成s,求有多少种组法. 题解: DFS或者DP或打表. 1.DFS 由于数据范围很小,直接dfs每种组法统计个数即可. //#pr ...

  5. Equal Sum Sets

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=49406 题意: 输入n,k,s,求在不小于n的数中找出k个不同的数 ...

  6. UVALive 6661 Equal Sum Sets

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. [UVALive 6661 Equal Sum Sets] (dfs 或 dp)

    题意: 求从不超过 N 的正整数其中选取 K 个不同的数字,组成和为 S 的方法数. 1 <= N <= 20  1 <= K<= 10  1 <= S <= 15 ...

  8. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  9. Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解

    Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  2. Eclipse快捷键 今天又学会了几个不常用的 收藏了

    1.Ctrl+e           打开所有已经打开的文件列表,当你使用Eclipse打开了N多文件的时候,需要找到一个你之前打开过                       的文件,是不是就很费 ...

  3. 利用GDataXML解析XML文件

    1.导入GDataXMLNode.h 和 GDataXMLNode.m文件 2.导入libxml2库文件 3.工程target下Bulid Settings  搜索search 找到Hearder S ...

  4. [javascript]MooTools Selectors(MooTools 选择器) ELEMENT DOM选择

    //ELEMENT DOM选择//on are tag names. //All the divs on the page: $$('div'); //All the divs and paragra ...

  5. linux分区工具fdisk的使用

    fdisk是linux下的一块分区工具,使用简单方便,由于是对系统进行修改,需要root权限. 常用参数如下: fdisk  -l : 列出所有的硬盘信息 直接传入设备名称可进入对该硬盘分区.例如,f ...

  6. isdigit()判断是不是数字

    string 里面的函数isdigit(),可以判断是不是数字. 或者,采用type(1)==int.

  7. BZOJ 1324: Exca王者之剑

    1324: Exca王者之剑 Description Input 第一行给出数字N,M代表行列数.N,M均小于等于100 下面N行M列用于描述数字矩阵 Output 输出最多可以拿到多少块宝石 Sam ...

  8. 最长回文串(manacher算法)

    ; ; int p[N]; char str[LEN], tmp[N]; //p[i]表示以str[i]为中心的回文往右延伸的 最长长度 void manacher(char* str, int* p ...

  9. apache .htaccess文件详解和配置技巧总结

    一..htaccess的基本作用 .htaccess是一个纯文本文件,它里面存放着Apache服务器配置相关的指令.       .htaccess主要的作用有:URL重写.自定义错误页面.MIME类 ...

  10. hibernate+spring的整合思路加实例(配图解)

    首先框架整合我感觉最难的是jar包的引入.因为不同框架的jar容易产生冲突.如果能排除这个因素我想说整合框架还是相对比较容易的. 我整合的框架的一个思想就是:各司其职.因为每个框架处理的事务或者是层次 ...