leetcode-52-N皇后②
题目描述:
方法一:回溯
class Solution:
def totalNQueens(self, n: int) -> int:
def backtrack(i,tmp,col,z_diagonal,i_diagonal):
if i == n:
nonlocal res
res += 1
return
for j in range(n):
if j not in col and i+j not in z_diagonal and i-j not in i_diagonal:
backtrack(i+1,tmp+[s[:j]+"Q"+s[j+1:]],col|{j},z_diagonal|{i+j},i_diagonal|{i-j})
s = "." * n
res = 0
backtrack(0,[],set(),set(),set())
return res
另:位运算优化:*
class Solution:
def totalNQueens(self, n: int) -> int:
def backtrack(row = 0, hills = 0, next_row = 0, dales = 0, count = 0):
"""
:type row: 当前放置皇后的行号
:type hills: 主对角线占据情况 [1 = 被占据,0 = 未被占据]
:type next_row: 下一行被占据的情况 [1 = 被占据,0 = 未被占据]
:type dales: 次对角线占据情况 [1 = 被占据,0 = 未被占据]
:rtype: 所有可行解的个数
"""
if row == n: # 如果已经放置了 n 个皇后
count += 1 # 累加可行解
else:
# 当前行可用的列
# ! 表示 0 和 1 的含义对于变量 hills, next_row and dales的含义是相反的
# [1 = 未被占据,0 = 被占据]
free_columns = columns & ~(hills | next_row | dales) # 找到可以放置下一个皇后的列
while free_columns:
# free_columns 的第一个为 '1' 的位
# 在该列我们放置当前皇后
curr_column = - free_columns & free_columns # 放置皇后
# 并且排除对应的列
free_columns ^= curr_column count = backtrack(row + 1,
(hills | curr_column) << 1,
next_row | curr_column,
(dales | curr_column) >> 1,
count)
return count # 棋盘所有的列都可放置,
# 即,按位表示为 n 个 '1'
# bin(cols) = 0b1111 (n = 4), bin(cols) = 0b111 (n = 3)
# [1 = 可放置]
columns = (1 << n) - 1
return backtrack()
另:
class Solution:
def totalNQueens(self, n: int) -> int:
def DFS(n: int, row: int, cols: int, left: int, right: int):
""" 深度优先搜索
:param n: N皇后个数
:param row: 递归的深度
:param cols: 可被攻击的列
:param left: 左侧斜线上可被攻击的列
:param right: 右侧斜线上可被攻击的列
"""
if row >= n:
self.res += 1
return # 获取当前可用的空间
bits = (~(cols | left | right)) & ((1 << n) - 1) # 遍历可用空间
while bits:
# 获取一个位置
p = bits & -bits
DFS(n, row + 1, cols | p, (left | p) << 1, (right | p) >> 1)
bits = bits & (bits - 1) if not (n == 1 or n >= 4):
# N皇后问题只有在 N 大于等于 4 或等于 1 的时候才有解
return 0
self.res = 0
DFS(n, 0, 0, 0, 0)
return self.res
leetcode-52-N皇后②的更多相关文章
- Java实现 LeetCode 52 N皇后 II
52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...
- [LeetCode] 52. N皇后 II
题目链接 : https://leetcode-cn.com/problems/n-queens-ii/ 题目描述: n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间 ...
- leetcode 52 N皇后问题 II
51的简化版,省去根据排列话棋盘的工作,直接计数,代码: class Solution { public: int totalNQueens(int n) { ; vector<); dfs(n ...
- Leetcode之回溯法专题-52. N皇后 II(N-Queens II)
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...
- leetcode 51. N皇后 及 52.N皇后 II
51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...
- [LeetCode] 52. N-Queens II N皇后问题之二
The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens a ...
- [LeetCode] 52. N-Queens II N皇后问题 II
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- [leetcode]52. N-Queens II N皇后
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- [LeetCode] N-Queens N皇后问题
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- LeetCode - 52. N-Queens II
52. N-Queens II Problem's Link --------------------------------------------------------------------- ...
随机推荐
- 【记录】uni-app Chrome跨域解决方案插件 has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is...
博主最近在用Hbuilder X开发前端网页时, 出现了has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header ...
- 2018-10-19-C#-GUID-ToString-
title author date CreateTime categories C# GUID ToString lindexi 2018-10-19 9:4:44 +0800 2018-4-1 10 ...
- logging自定义模板
import logging logger=logging.getLogger('这是一个日志')#先生成一个日志 formatter=logging.Formatter('%(asctime)s % ...
- 【leetcode】bash脚本练习
[192]Word Frequency Write a bash script to calculate the frequency of each word in a text file words ...
- 【leetcode】966. Vowel Spellchecker
题目如下: Given a wordlist, we want to implement a spellchecker that converts a query word into a correc ...
- Magento笔记/记录(1)
1.Magento eav_attribute表中source如何指定自定义数据来源 如果你引用的类名为yebihai_usermanage_model_entity_school你必须完整的给出地 ...
- 电脑U盘启动制作
1.用老毛桃.大白菜制作U盘驱动时,不要直接默认一键制作.不然安装的系统会植入第三方的软件的.一定要进行个性化设置中取消赞助商.
- mybatis的核心对象图解
- 2019牛客多校第三场J-LRU management(map+双向链表)
LRU management 题目传送门 解题思路 用map索引对应地址,用双向链表维护序列. 代码如下 #include <bits/stdc++.h> #define INF 0x3f ...
- 洛谷 P4173 残缺的字符串 (FFT)
题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...