这题其实挺简单的,有个东西可能稍微难维护了一点点。。

\(merge\ x\ e\) 当前第 \(x\) 个原子和第 \(x+1\) 个原子合并,得到能量为 \(e\) 的新原子;

\(insert\ x\ e\) 在当前第 \(x\) 个原子和第 \(x+1\) 个原子之间插入一个能量为 \(e\) 的新原子。

\(max\ x\ y\) 当前第 \(x\) 到第 \(y\) 个原子之间的任意子区间中区间极差的最大值;

\(min\ x\ y\) 当前第 \(x\) 到第 \(y\) 个原子之间的任意子区间中区间极差的最小值。

极差最大值其实很显然是个区间 \(max - min\)

极差最小的区间呢,长度至少为 \(2\) 也必须为 \(2\)

至于证明的话

考虑 \(x,y,z\)

如果 \(x\) 和 \(z\) 的差的绝对值是解,那么 \(|x-y|\) 或者 \(|y-z|\) 一定更优

因为 \(x \leq y \leq z\) 才符合这种情况。

所以随便写写,把相邻两个的差变成后一个点的值,随便写写就可以了。

// by Isaunoya
#include <bits/stdc++.h>
using namespace std;
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i) const int _ = 1 << 21;
struct I {
char fin[_], *p1 = fin, *p2 = fin;
inline char gc() {
return (p1 == p2) && (p2 = (p1 = fin) + fread(fin, 1, _, stdin), p1 == p2) ? EOF : *p1++;
}
inline I& operator>>(int& x) {
bool sign = 1;
char c = 0;
while (c < 48) ((c = gc()) == 45) && (sign = 0);
x = (c & 15);
while ((c = gc()) > 47) x = (x << 1) + (x << 3) + (c & 15);
x = sign ? x : -x;
return *this;
}
inline I& operator>>(double& x) {
bool sign = 1;
char c = 0;
while (c < 48) ((c = gc()) == 45) && (sign = 0);
x = (c - 48);
while ((c = gc()) > 47) x = x * 10 + (c - 48);
if (c == '.') {
double d = 1.0;
while ((c = gc()) > 47) d = d * 0.1, x = x + (d * (c - 48));
}
x = sign ? x : -x;
return *this;
}
inline I& operator>>(char& x) {
do
x = gc();
while (isspace(x));
return *this;
}
inline I& operator>>(string& s) {
s = "";
char c = gc();
while (isspace(c)) c = gc();
while (!isspace(c) && c != EOF) s += c, c = gc();
return *this;
}
} in;
struct O {
char st[100], fout[_];
signed stk = 0, top = 0;
inline void flush() {
fwrite(fout, 1, top, stdout), fflush(stdout), top = 0;
}
inline O& operator<<(int x) {
if (top > (1 << 20)) flush();
if (x < 0) fout[top++] = 45, x = -x;
do
st[++stk] = x % 10 ^ 48, x /= 10;
while (x);
while (stk) fout[top++] = st[stk--];
return *this;
}
inline O& operator<<(char x) {
fout[top++] = x;
return *this;
}
inline O& operator<<(string s) {
if (top > (1 << 20)) flush();
for (char x : s) fout[top++] = x;
return *this;
}
} out;
#define pb emplace_back
#define fir first
#define sec second template < class T > inline void cmax(T & x , const T & y) {
(x < y) && (x = y) ;
}
template < class T > inline void cmin(T & x , const T & y) {
(x > y) && (x = y) ;
} int n , m , rt = 0 ;
const int N = 2e5 + 10 ;
int a[N] ;
const int inf = 0x7fffffff ;
int rnd[N] , val[N] , mx[N] , mn[N] , ch[N][2] , sz[N] ;
int cnt = 0 ;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
int newnode(int v) {
++ cnt ;
val[cnt] = mx[cnt] = mn[cnt] = v ;
rnd[cnt] = rand() ;
sz[cnt] = 1 ;
return cnt ;
}
int t[N] , s[N] ;
void pushup(int rt) {
mx[rt] = mn[rt] = val[rt] ;
if(ls(rt)) cmin(mn[rt] , mn[ls(rt)]) , cmax(mx[rt] , mx[ls(rt)]) ;
if(rs(rt)) cmin(mn[rt] , mn[rs(rt)]) , cmax(mx[rt] , mx[rs(rt)]) ;
sz[rt] = sz[ls(rt)] + sz[rs(rt)] + 1 ;
t[rt] = min(t[ls(rt)] , t[rs(rt)]) , cmin(t[rt] , s[rt]) ;
}
int merge(int u , int v) {
if(! u || ! v) return u | v ;
if(rnd[u] < rnd[v]) {
rs(u) = merge(rs(u) , v) ;
pushup(u) ;
return u ;
} else {
ls(v) = merge(u , ls(v)) ;
pushup(v) ;
return v ;
}
}
void split(int cur , int k , int & u , int & v) {
if(! cur) {
u = v = 0 ;
return ;
}
if(k <= sz[ls(cur)]) {
v = cur ;
split(ls(v) , k , u , ls(v)) ;
} else {
u = cur ;
split(rs(u) , k - sz[ls(u)] - 1 , rs(u) , v) ;
}
pushup(cur) ;
}
void ins(int k , int v) {
int x , y , z , xx ;
split(rt , k - 1 , x , y) ;
split(y , 1 , y , z) ;
split(z , 1 , z , xx) ;
int now = newnode(v) ;
t[now] = s[now] = abs(val[now] - val[y]) ;
if(! y) {
t[now] = s[now] = inf ;
}
t[z] = s[z] = abs(val[z] - val[now]) ;
if(! z) {
t[z] = s[z] = inf ;
}
rt = merge(merge(merge(merge(x , y) , now) , z) , xx) ;
}
void _merge(int k , int v) {
int x , y , z , xx ;
split(rt , k - 1 , x , y) ;
split(y , 1 , y , z) ;
split(z , 1 , z , xx) ;
rt = merge(x , xx) ;
ins(k - 1 , v) ;
}
int qrymax(int l , int r) {
int x , y , z ;
split(rt , r , x , z) ;
split(x , l - 1 , x , y) ;
int res = mx[y] - mn[y] ;
rt = merge(merge(x , y) , z) ;
return res ;
}
int qrymin(int l , int r) {
++ l ;
int x , y , z ;
split(rt , r , x , z) ;
split(x , l - 1 , x , y) ;
int res = t[y] ;
rt = merge(merge(x , y) , z) ;
return res ;
}
void dfs(int u) {
if(ls(u)) dfs(ls(u)) ;
out << val[u] << '\n' ;
if(rs(u)) dfs(rs(u)) ;
}
signed main() {
#ifdef _WIN64
freopen("testdata.in" , "r" , stdin) ;
#endif
in >> n >> m ;
rep(i , 1 , n) in >> a[i] ;
rt = newnode(a[1]) ;
t[rt] = s[rt] = inf ;
rep(i , 2 , n) ins(i - 1 , a[i]) ;
rep(i , 1 , m) {
string s ;
in >> s ;
int x , y ;
in >> x >> y ;
if(s == "max") out << qrymax(x , y) << '\n' ;
if(s == "min") out << qrymin(x , y) << '\n' ;
if(s == "merge") _merge(x , y) ;
if(s == "insert") ins(x , y) ;
}
return out.flush(), 0;
}

#4864. [BeiJing 2017 Wc]神秘物质 [FHQ Treap]的更多相关文章

  1. BZOJ 4864: [BeiJing 2017 Wc]神秘物质 解题报告

    4864: [BeiJing 2017 Wc]神秘物质 Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子. ...

  2. BZOJ 4864: [BeiJing 2017 Wc]神秘物质 (块状链表/平衡树 )

    这就是一道数据结构裸题啊,最大极差就是区间最大值减最小值,最小极差就是相邻两个数差的最小值.然后平衡树splay/treap或者块状链表维护就行了. 第一次自己写块状链表,蛮好写,就是长..然后就BZ ...

  3. BZOJ_4864_[BeiJing 2017 Wc]神秘物质_Splay

    BZOJ4864_[BeiJing 2017 Wc]神秘物质_Splay Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天 ...

  4. 【BZOJ4864】[BeiJing 2017 Wc]神秘物质 Splay

    [BZOJ4864][BeiJing 2017 Wc]神秘物质 Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微 ...

  5. BZOJ4864[BeiJing 2017 Wc]神秘物质——非旋转treap

    题目描述 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子.这 一天, 小诚刚从研究所得到了一块奇异的陨石样本, 便迫不及待地开始 ...

  6. [bzoj4864][BeiJing 2017 Wc]神秘物质

    来自FallDream的博客,未经允许,请勿转载,谢谢. 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子.这 一天, 小诚刚从研 ...

  7. BZOJ4864 BeiJing 2017 Wc神秘物质(splay)

    splay维护区间最大值.最小值.相邻两数差的绝对值的最小值即可. #include<iostream> #include<cstdio> #include<cmath& ...

  8. BZOJ4864: [BeiJing 2017 Wc]神秘物质(Splay)

    Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子.这 一天, 小诚刚从研究所得到了一块奇异的陨石样本, 便 ...

  9. [bzoj4864][BeiJing2017Wc]神秘物质_非旋转Treap

    神秘物质 bzoj-4864 BeiJing-2017-Wc 题目大意:给定一个长度为n的序列,支持插入,将相邻两个元素合并并在该位置生成一个指定权值的元素:查询:区间内的任意一段子区间的最大值减最小 ...

随机推荐

  1. Excel VBA: 自动生成巡检报表并通过邮件定时发送

    目录 环境说明逻辑结构效果说明及截图①.安装SecureCRT②. 自动巡检脚本③. 数据检索并FTP传送④. 安装Excel 2013⑤. 安装Serv-U⑥. 自动生成图表并邮件发送 环境说明 系 ...

  2. 【笔记】最短路——SPFA算法

    ##算法功能 找最短路(最长路?) ##算法思想 用一个节点k更新节点i到节点j的最短路 ##邻接链表存储 基础而高效的图的存储方式 存的是单向边(无向边可以看成两条有向边) ##实现 维护节点i到源 ...

  3. EF core (code first) 通过自动迁移实现多租户数据分离 :按Schema分离数据

    前言 本文是多租户系列文章的附加操作文章,如果想查看系列中的其他文章请查看下列文章 主线文章 Asp.net core下利用EF core实现从数据实现多租户(1) Asp.net core下利用EF ...

  4. Time-Frequency Networks For Audio Super-Resolution

    论文题目:2018_用于音频超分辨率的时频网络 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12345950.html 摘要 音频超分辨率(即带 ...

  5. Keepalived 配置文件

    keepalived的配置文件: keepalived只有一个配置文件keepalived.conf,里面主要包括以下几个配置区域,分别是global_defs.              全局定义及 ...

  6. jq根据table的tr行数动态删除相应的行

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. JWT实现token-based会话管理(转)

    JWT实现token-based会话管理   阅读目录 认识JWT demo要点说明 小结 上文<3种web会话管理的方式>介绍了3种会话管理的方式,其中token-based的方式有必要 ...

  8. axios中get请求的params参数中带数组的处理方法

    axios中get请求的params参数中带数组时导致向后台传参失败报错:from origin 'http://localhost:8080' has been blocked by CORS po ...

  9. MyEclipse10下载安装破解及汉化内含jdk8u241及其帮助文档

    下载MyEclipse10以及破解包 MyEclipse10: 提取码:020c 破解包 提取码:mycj 注:破解包内含有破解教程,很详细,这里就不多说了 MyEclipse10汉化 操作系统:wi ...

  10. HDFS基本命令fs的使用操作

    HDFS(Hadoop Distributed File System)就是hadoop分布式文件系统,fs是操作HDFS文件的一个常用命令. 1.hadoop fs -help 查看fs使用帮助 2 ...