题目

假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?

比如n=3,1+1+1=1+2=2+1=3,共有中不同的方法

返回 3

1  2  3  5  8  13...

step[2] = step[0] + step[1];

C++代码

int climbStairs(int n) {
// write your code here
if(n == 0) return 1;
if(n <= 2) return n;
int step_1,step_2,step_3;
step_1 = 1;
step_2 = 2;
for(int i = 2; i < n; ++i)
{
step_3 = step_1 + step_2;
step_1 = step_2;
step_2 = step_3;
}
return step_3;
}

  

LintCode_111 爬楼梯的更多相关文章

  1. lintcode: 爬楼梯

    题目: 爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 解题: 动态规划题目,同时还是有顺序 ...

  2. 爬楼梯问题-斐波那契序列的应用.md

    N 阶楼梯,一次可以爬1.2.3...n步,求爬楼梯的种类数 /** * 斐波那契序列 */ public class ClimbingStairs { // Sol 1: 递归 // 递归 公式:F ...

  3. 2017广东工业大学程序设竞赛C题爬楼梯

    Description 小时候,我只能一阶一阶得爬楼梯, 后来,我除了能一次爬一阶,还可以一次爬两阶, 到现在,我最多一次可以爬三阶. 那么现在问题来了,我想爬上n层楼,相邻楼层之间有一段楼梯,虽然我 ...

  4. c++(爬楼梯)

    前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...

  5. Algorithm --> 爬楼梯求最大分数

    爬楼梯求最大分数 如下图,最大分数是: 10+20+25+20=75.        要求: 1.每次只能走一步或者两步: 2.不能连续三步走一样的,即最多连续走两次一步,或者连续走两次两步: 3.必 ...

  6. climbing stairs(爬楼梯)(动态规划)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  7. [Swift]LeetCode70. 爬楼梯 | Climbing Stairs

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  8. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  9. LeetCode 70 - 爬楼梯 - [递推+滚动优化]

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...

随机推荐

  1. Apache SOLR and Carrot2集成

    1.环境 下载软件 名称 地址 solr-integration-strategies-gh-pages.zip https://github.com/carrot2/solr-integration ...

  2. 【codeforces 505C】Mr.Kitayuta,the Treasure Hunter

    [题目链接]:http://codeforces.com/problemset/problem/505/C [题意] 一开始你跳一步长度为d; 之后你每步能跳d-1,d,d+1这3种步数; 然后在路上 ...

  3. Coursera ML笔记 - 神经网络(Representation)

    前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew N ...

  4. js 给链接 url或href或js、css、图片等解决浏览器缓存

    一. 添加时间戳 情况一.链接是常量 var rand = new Date().getTime(); var aLen=document.getElementsByTagName("a&q ...

  5. DOM4J -(XML解析包)

    DOM4J - 简介 是dom4j.org出品的一个开源XML解析包.Dom4j是一个易用的.开源的库,用于XML,XPath和XSLT.它应用于Java平台,采用了Java集合框架并完全支持DOM, ...

  6. python中的*args与**kwargs的含义与作用

    在定义函数的时候参数通常会使用 *args与**kwgs,形参与实参的区别不再赘述,我们来解释一下这两个的作用. *args是非关键字参数,用于元组,**kwargs是关键字参数 (字典)例如下面的代 ...

  7. java mybatis 参数问题

  8. Hdfs的列存储和行存储

    列可以分开存储,对于重复性高的数据压缩比会高,但是在元组(行shi)恢复会比较消耗性能 于传统列存储不同 是行组会存储于同一节点中,列扫描会比较快(因为只需扫描一个行组)

  9. Hadoop 集群网络拓扑

  10. 再也不怕数据丢失!阿里云RDS MySQL 8.0上线回收站功能

    背景 MySQL 在生产环境使用过程中,会伴随着开发和运维人员的误操作,比如 DROP TABLE / DATABASE,这类 DDL 语句不具有可操作的回滚特性,而导致数据丢失,AliSQL 8.0 ...