@description@

给出 n, m, x,你需要求出下列式子的值:

\[\sum_{(\sum_{i=1}^mk_i)=n}(\prod_{i=1}^{m}\sin(k_i*x))
\]

其中 ki 为正整数。由于答案非常大,你只需要输出答案(保证不为 0)的正负(如果是负数输出负号,否则输出正号)和从左往右第一个非 0 数位上的数字即可。

input

第一行一个整数 T 表示数据组数。

对于每组数据,每行有两个整数 m,n 和一个两位小数 x。

对于 100%的数据,T ≤ 10,n ≤ 10^9,m ≤ 30。

output

输出共 T 行,每行两个字符表示答案。

sample input

2

3 5 0.01

3 6 0.02

sample output

+2

+4

@solution@

其实题目要你求解的说白了就是卷积。即对于多项式 \(f(p) = \sum_{i=1}^{+\infty}\sin(i*x)p^i\),求 \(f^m(p)\) 中第 n 项的系数为多少。然而 n 最大可以为 10^9,FFT 再怎么优化也过不了。

我们发现对于这个卷积,我们想要得到的其实只有第 n 项的系数,其他项的系数并不重要,而 FFT 必然要求出所有的系数,所以时间复杂度肯定降不下来。我们不得不换一种思路。

如果是一般多项式,FFT 就是时间复杂度的下限。但是我们的系数是三角函数,也就是说,我们要利用三角函数的一些性质。

数据范围 n <= 10^9,且对象是三角函数。如果熟悉的话,很容易想到三角函数的递推式:

\[\sin kx = 2\cos x\sin(k-1)x -\sin(k-2)x
\]

边界为已知量 \(\sin 0, \sin x\)。 \(\cos x\) 是一个我们可以预先知道的常数,这样子就可以和矩阵乘法扯上关系了。

这个式子是怎么来的呢?可以参考下面的推导过程(但是如果你很熟悉了可以直接跳过)。

首先是三角函数的和差公式:

\[\sin kx = \sin x\cos (k-1)x+\cos x\sin (k-1)x
\]

这个式子中的 \(\cos (k-1)x\) 是我们想要消去的,因此再对它使用一次和差公式。

\[\sin kx =\sin x\cos(k-2)x\cos x-\sin^2 x\sin(k-2)x + \cos x\sin (k-1)x
\]

又出现了 \(\cos (k-2)x\)。但是,注意到其实可以把 \(\sin x\cos(k-2)x\) 当作一个整体,而这个整体出现在 \(\sin (k-1)x\) 的和差公式中。

因此,我们把 \(\sin (k-1)x = \sin x\cos (k-2)x+\cos x\sin (k-2)x\) 变形代入上式。

\[\sin kx =\cos x\sin(k-1)x -\cos^2 x\sin(k-2)x-\sin^2 x\sin(k-2)x + \cos x\sin (k-1)x
\]

恒等变形,就可以得到我们的结果:

\[\sin kx =2\cos x\sin(k-1)x -\sin(k-2)x
\]

好的我们推完式子再回到我们刚刚的思路。

考虑几种特殊情况吧。

当 m = 1 时,就是求 \(\sin nx\), 直接矩阵加速即可(当然最直接的还是暴力算)。

当 m = 2 时,令 \(g[i] = \sum_{j=1}^{i-1}(\sin(j*x)*\sin((i-j)*x))\),我们相当于是求 \(g[n]\)。

我们尝试建立递推关系。代入三角函数的递推式得到(注意边界情况的存在):

\[g[i] = \sin x*\sin((i-1)*x)+\sum_{j=2}^{i-1}((2\cos x\sin(j-1)x -\sin(j-2)x)\sin((i-j)*x))\\
=\sin x*\sin((i-1)*x)+2*\cos x*g[i-1]-g[i-2]\]

其中 \(\sin((i-1)*x)\) 虽然不是常数,但是也可以通过矩阵乘法得到。

更一般地,令 \(dp[i][j]\) 表示 j 个多项式卷积第 i 项的系数,我们可以得到如下的递推关系:

\[\begin{cases}dp[i][j]=\sin x*dp[i-1][j-1]+2*\cos x*dp[i-1][j]-dp[i-2][j] & i \geq 2 \\
dp[i][j] = \sin x & i = 1 且 j = 1\\
dp[i][j] = 0 & otherwise
\end{cases}\]

然后就可以矩阵加速了。

@accepted code@

不知道为什么,求解非零位时必须按照标程写才能过。

如果 p 一直作除法改成 ans 一直作乘法就过不了。

是因为后者浮点误差太大了吗?如果有知道的拜托请评论在下面告诉我好吗 QAQ。

#include<cstdio>
#include<cmath>
const int MAXN = 30;
struct matrix{
int r, c;
double m[MAXN*2 + 5][MAXN*2 + 5];
}M, B;
matrix operator * (matrix A, matrix B) {
matrix C; C.r = A.r, C.c = B.c;
for(int i=0;i<C.r;i++)
for(int j=0;j<C.c;j++) {
C.m[i][j] = 0;
for(int k=0;k<A.c;k++)
C.m[i][j] += A.m[i][k]*B.m[k][j];
}
return C;
}
/*
void Print(matrix M) {
puts("");
for(int i=0;i<M.r;i++) {
for(int j=0;j<M.c;j++)
printf("%lf ", M.m[i][j]);
puts("");
}
puts("");
}
*/
matrix qpow(matrix A, int p) {
matrix ret; ret.r = A.r, ret.c = A.c;
for(int i=0;i<ret.r;i++)
for(int j=0;j<ret.c;j++)
ret.m[i][j] = (i == j);
while( p ) {
if( p & 1 ) ret = ret * A;
A = A * A;
p >>= 1;
}
return ret;
}
void solve() {
int m, n; double x;
scanf("%d%d%lf", &m, &n, &x);
B.r = 2*m, B.c = 1, B.m[0][0] = 1;
for(int i=0;i<2*m;i++)
B.m[i][0] = 0;
B.m[m-1][0] = sin(x);
M.r = M.c = 2*m;
for(int i=0;i<2*m;i++)
for(int j=0;j<2*m;j++)
M.m[i][j] = 0;
for(int i=0;i<m;i++) {
M.m[i][i] = 2*cos(x);
M.m[i][m + i] = -1;
M.m[m + i][i] = 1;
}
for(int i=2;i<=m;i++)
M.m[i-2][i-1] = sin(x);
//Print(M); Print(B);
//Print(qpow(M, n-1)*B);
double ans = (qpow(M, n-1)*B).m[0][0];
putchar(ans > 0 ? '+' : '-');
ans = fabs(ans);
if( ans > 1 ) {
while( ans >= 10 ) ans /= 10;
printf("%d\n", int(ans));
}
else {
double p = 0.1;
while( p > ans ) p /= 10;
printf("%d\n", int(ans/p));
}
}
int main() {
int T; scanf("%d", &T);
for(int i=1;i<=T;i++) solve();
}

@details@

不得不说这道题还真的挺容易让人走错方向来着。

首先这是一个卷积形式,一开始肯定是思考能不能用 FFT(特别是像我一样最近才入多项式这个坑什么都想先来 FFT 一下)。

然后 m 个正整数的和为 n,又是一个组合数学的经典问题。这又是一个大坑。

然后 sin(x),一样是因为最近学了多项式,搞得我都想泰勒展开了……

当然如果你是神犇肯定不会像我一样去想上面那些错误思路而是一眼就秒出了这道题的正解。

@雅礼集训01/06 - T3@ math的更多相关文章

  1. @雅礼集训01/13 - T1@ union

    目录 @description@ @solution@ @part - 1@ @part - 2@ @part - 3@ @accepted code@ @details@ @description@ ...

  2. @雅礼集训01/10 - T1@ matrix

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个矩阵.求它的所有子矩阵中本质不同的行的个数之和. inp ...

  3. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  4. 雅礼集训1-9day爆零记

    雅礼集训1-9day爆零记 先膜一下虐爆我的JEFF巨佬 Day0 我也不知道我要去干嘛,就不想搞文化科 (文化太辣鸡了.jpg) 听李总说可以去看(羡慕)各路大佬谈笑风声,我就报一个名吧,没想到还真 ...

  5. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  6. 雅礼集训【Day6-1】字符串

    雅礼集训[Day6-1]字符串 假设我们有串\(a\),我们设\(a'\)为\(a\)翻转后按为取反过后的串. 我们只考虑前一半的,长为\(m\)的串.如果前半截匹配了\(a\)或者\(a'\),则\ ...

  7. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  8. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  9. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

随机推荐

  1. dedecms list标签调用附加表字段--绝对成功

    使用list标签调用附加表字段的时候会忽略一个地方,明明附加字段名已经添加进去了就是调用不出来 经过在网上查询了资料,说的天花乱坠,也都实践过一些,但是就是不成功鞋面介绍一下犯的低级错误在哪里 {de ...

  2. day38 03-Spring的IOC和DI的区别

    在IOC中有一个DI的概念. IOC是控制反转,DI是依赖注入.现在编写的类里面是没有其他的属性的.如果你学过像UML设计的话, 电视没有遥控器,按按钮也可以,但是紧密的那种,像人和四肢,人如果没有了 ...

  3. vue和element全局loading

    http请求的代码如下: import axios from 'axios' import { Message} from 'element-ui' import store from '../sto ...

  4. Entrust - Laravel 用户权限系统解决方案 | Laravel China 社区 - 高品质的 Laravel 和 PHP 开发者社区 - Powered by PHPHub

    说明# Zizaco/Entrust 是 Laravel 下 用户权限系统 的解决方案, 配合 用户身份认证 扩展包 Zizaco/confide 使用, 可以快速搭建出一套具备高扩展性的用户系统. ...

  5. 百分比宽度并排元素浮动之后,设置margin,padding换行的问题

    今天遇到一个问题, 如下图,右边的div加了内边距换行: 解决方法: box-sizing: border-box;

  6. Codeforces Round #263 (Div. 2) A. Appleman and Easy Task【地图型搜索/判断一个点四周‘o’的个数的奇偶】

    A. Appleman and Easy Task time limit per test 1 second memory limit per test 256 megabytes input sta ...

  7. php安装oci8和pdo_oci扩展实现连接oracle数据库

    PHP一般跟MySQL数据库搭配使用,但最近遇到一个需求需要实现PHP连接Oracle,了解到PHP可以通过pdo_oci和oci8扩展来连接Oracle,这里将安装的过程记录下来. 安装环境:PHP ...

  8. Leetcode832.Flipping an Image翻转图像

    给定一个二进制矩阵 A,我们想先水平翻转图像,然后反转图像并返回结果. 水平翻转图片就是将图片的每一行都进行翻转,即逆序.例如,水平翻转 [1, 1, 0] 的结果是 [0, 1, 1]. 反转图片的 ...

  9. buffer的相关小知识

    php与mysql的连接有三种方式,mysql,mysqli,pdo.不管使用哪种方式进行连接,都有使用buffer和不使用buffer的区别. 什么叫使用buffer和不使用buffer呢? 客户端 ...

  10. left join table_a on ...like...