洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000)。
很套路的莫比乌斯反演。
$\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[gcd(i,j)==1]$
令f(n)为gcd是n的个数,g(n)为gcd是n或n的倍数的个数。
根据反演公式可以得到:$f(n)=\sum_{n|d}\mu(\frac{d}{n})g(d)$
答案即为f(1),对于g函数可以O(1)得到答案,$g(d)=\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor$
原式$=\sum_{d=1}^{\lfloor \frac{n}{k}\rfloor}\mu(d){\lfloor \frac{n}{kd}\rfloor}{\lfloor \frac{m}{kd}\rfloor}$
预处理莫比乌斯函数前缀和,后面部分整除分块就行了。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=5e4+;
int pri[N],tot,mu[N];
bool p[N];
void init() {
mu[]=;
for(int i=;i<N;i++) {
if(!p[i]) mu[i]=-,pri[tot++]=i;
for(int j=;j<tot&&pri[j]*i<N;j++) {
p[i*pri[j]]=true;
if(i%pri[j]==) {
mu[i*pri[j]]=;
break;
}
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<N;i++) mu[i]+=mu[i-];
}
int main() {
init();
int T,n,m,d;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&n,&m,&d),n/=d,m/=d;
if(n>m) swap(n,m);
ll ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=1LL*(mu[r]-mu[l-])*(n/l)*(m/l);
}
printf("%lld\n",ans);
}
return ;
}
洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)的更多相关文章
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- [洛谷P1390]公约数的和·莫比乌斯反演
公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
随机推荐
- 修改CentOS6.5主机名引起MySQL5.6.35服务问题
本来是心血来潮修改CentOS6.5的主机名 /****** 修改CentOS6.5默认主机名 ******/ .备份系统网络配置文件 [root@localhost ~]# cp /etc/sysc ...
- Scrapy框架Crawler模板爬虫
1.创建一个CrawlerSpider scrapy genspider -t crawl wx_spider 'wxapp-union.com' #导入规则 from scrapy.spiders ...
- VS2005连接MySQL C API
1.在属性添加:附加目录,附加依赖库,附加库目录: 2.在stdafx.h中加入: #include <winsock.h> #include "mysql.h" 3. ...
- 一个网页登陆界面写30多个测试Case——测试之道
转自博文:http://www.cnblogs.com/I-am-Betty/p/3566411.html 具体需求: 有一个登陆页面, (假如上面有2个textbox, 一个提交按钮. 请针对这个页 ...
- 从大数据到快数据 数据智创未来——2019 CCF大数据与计算智能大赛正式开赛!
8月17日,以“数据驱动,智创未来”为主题的2019 CCF大数据与计算智能大赛(CCF Computing Intelligence Contest,简称CCF BDCI)全球启动仪式,在北京大学正 ...
- 【python之路28】模块python与excel
一.可使用的第三方库 python中处理excel表格,常用的库有xlrd(读excel)表.xlwt(写excel)表.openpyxl(可读写excel表)等.xlrd读数据较大的excel表时效 ...
- Django项目:CRM(客户关系管理系统)--44--36PerfectCRM实现King_admin密码修改
# king_urls.py # ————————02PerfectCRM创建ADMIN页面———————— from django.conf.urls import url from king_ad ...
- 通过游戏学python 3.6 第一季 第八章 实例项目 猜数字游戏--核心代码--猜测次数--随机函数和屏蔽错误代码--优化代码及注释--简单账号密码登陆--账号的注册查询和密码的找回修改--锁定账号--锁定次数
通过游戏学python 3.6 第一季 第八章 实例项目 猜数字游戏--核心代码--猜测次数--随机函数和屏蔽错误代码--优化代码及注释--简单账号密码登陆--账号的注册查询和密码的找回修改--锁定账 ...
- LUOGU P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
传送门 解题思路 比较简单的一道思路题,首先假设他们没有前面牛的限制,算出每只牛最远能跑多远.然后按照初位置从大到小扫一遍,如果末位置大于等于前面的牛,那么就说明这两头牛连一块了. 代码 #inclu ...
- laravel 下载报错:Unable to guess the mime type as no guessers are available
在使用laravel的download()函数实现下载功能时,报错如下:Unable to guess the mime type as no guessers are available (Did ...