ZOJ3195 Design the city [2017年6月计划 树上问题04]
Design the city
Time Limit: 1 Second Memory Limit: 32768 KB
Cerror is the mayor of city HangZhou. As you may know, the traffic system of this city is so terrible, that there are traffic jams everywhere. Now, Cerror finds out that the main reason of them is the poor design of the roads distribution, and he want to change this situation.
In order to achieve this project, he divide the city up to N regions which can be viewed as separate points. He thinks that the best design is the one that connect all region with shortest road, and he is asking you to check some of his designs.
Now, he gives you an acyclic graph representing his road design, you need to find out the shortest path to connect some group of three regions.
Input
The input contains multiple test cases! In each case, the first line contian a interger N (1 < N < 50000), indicating the number of regions, which are indexed from 0 to N-1. In each of the following N-1 lines, there are three interger Ai, Bi, Li (1 < Li < 100) indicating there's a road with length Li between region Ai and region Bi. Then an interger Q (1 < Q < 70000), the number of group of regions you need to check. Then in each of the following Q lines, there are three interger Xi, Yi, Zi, indicating the indices of the three regions to be checked.
Process to the end of file.
Output
Q lines for each test case. In each line output an interger indicating the minimum length of path to connect the three regions.
Output a blank line between each test cases.
Sample Input
4
0 1 1
0 2 1
0 3 1
2
1 2 3
0 1 2
5
0 1 1
0 2 1
1 3 1
1 4 1
2
0 1 2
1 0 3
Sample Output
3
2 2
2
Author: HE, Zhuobin
Source: ZOJ Monthly, May 2009
三个点的距离等于任意两点间距离加和除以2
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
inline void read(int &x)
{
char ch = getchar();char c = ch;x = 0;
while(ch < '0' || ch > '9')c = ch, ch = getchar();
while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
if(c == '-')x = -x;
}
inline void swap(int& a, int& b){int tmp = a;a = b;b = tmp;}
const int MAXN = 50000 + 10;
struct Edge{int u,v,w,next;}edge[MAXN << 1];
int head[MAXN], cnt, n, m;
inline void insert(int a,int b, int c){edge[++cnt] = Edge{a,b,c,head[a]};head[a] = cnt;}
int log2[MAXN], pow2[30];
int p[30][MAXN], deep[MAXN], len[MAXN];int b[MAXN]; void dfs(int u)
{
for(int pos = head[u];pos;pos = edge[pos].next)
{
int v = edge[pos].v;
if(b[v])continue;
b[v] = true;
len[v] = len[u] + edge[pos].w;
deep[v] = deep[u] + 1;
p[0][v] = u;
dfs(v);
}
} inline void yuchuli()
{
b[1] = true;
deep[1] = 0;
dfs(1);
for(register int i = 1;i <= log2[n];i ++)
for(register int j = 1;j <= n;j ++)
p[i][j] = p[i - 1][p[i - 1][j]];
} inline int lca(int va, int vb)
{
if(deep[va] < deep[vb])swap(va,vb);
for(register int i = log2[n];i >= 0;i --)
if(deep[va] - pow2[i] >= deep[vb])
va= p[i][va];
if(va == vb)return va;
for(register int i = log2[n];i >= 0;i --)
{
if(p[i][va] != p[i][vb])
{
va = p[i][va];
vb = p[i][vb];
}
}
return p[0][va];
} inline int l(int va, int vb)
{
int k = lca(va, vb);
return len[va] + len[vb] - (len[lca(va, vb)] << 1);
} int main()
{
register int tmp1,tmp2,tmp3;
log2[0] = -1;
for(register int i = 1;i <= MAXN;++ i)log2[i] = log2[i >> 1] + 1;
pow2[0] = 1;
for(register int i = 1;i <= 30;++ i)pow2[i] = pow2[i - 1] << 1;
bool ok = false;
while(scanf("%d", &n) != EOF)
{
if(ok)putchar('\n'),putchar('\n');
cnt = 0;memset(head, 0, sizeof(head));
memset(edge, 0, sizeof(edge));
memset(deep, 0, sizeof(deep));
memset(p, 0, sizeof(p));m = 0;
memset(b, 0, sizeof(b));
memset(len, 0, sizeof(len));
for(register int i = 1;i < n;++ i)
{
read(tmp1);read(tmp2);read(tmp3);
insert(tmp1 + 1, tmp2 + 1, tmp3);
insert(tmp1 + 1, tmp1 + 1, tmp3);
}
yuchuli();
read(m);
read(tmp1);read(tmp2);read(tmp3);
++ tmp1;++ tmp2;++ tmp3;
printf("%d", (l(tmp1, tmp2) + l(tmp2, tmp3) + l(tmp1, tmp3))>> 1);
for(register int i = 2;i <= m;++ i)
{
read(tmp1);read(tmp2);read(tmp3);
tmp1 ++;tmp2 ++;tmp3 ++;
int a = l(tmp1, tmp2);int b = l(tmp2, tmp3);int c = l(tmp1, tmp3);
printf("\n%d", (l(tmp1, tmp2) + l(tmp2, tmp3) + l(tmp1, tmp3))>> 1);
}
ok = true;
}
return 0;
}
ZOJ3195 Design the city [2017年6月计划 树上问题04]的更多相关文章
- HDU3887 Counting Offspring [2017年6月计划 树上问题03]
Counting Offspring Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 洛谷P3459 [POI2007]MEG-Megalopolis [2017年6月计划 树上问题02]
[POI2007]MEG-Megalopolis 题目描述 Byteotia has been eventually touched by globalisation, and so has Byte ...
- 洛谷P2912 [USACO08OCT]牧场散步Pasture Walking [2017年7月计划 树上问题 01]
P2912 [USACO08OCT]牧场散步Pasture Walking 题目描述 The N cows (2 <= N <= 1,000) conveniently numbered ...
- ZOJ3195 Design the city(LCA)
题目大概说给一棵树,每次询问三个点,问要把三个点连在一起的最少边权和是多少. 分几种情况..三个点LCA都相同,三个点有两对的LCA是某一点,三个点有两对的LCA各不相同...%……¥…… 画画图可以 ...
- [zoj3195]Design the city(LCA)
解题关键:求树上三点间的最短距离. 解题关键:$ans = (dis(a,b) + dis(a,c) + dis(b,c))/2$ //#pragma comment(linker, "/S ...
- RQNOJ PID192 梦幻大PK [2017年6月计划 二分图02]
PID192 / 梦幻大PK ☆ 提交你的代码 查看讨论和题解 你还木有做过哦 我的状态 查看最后一次评测记录 质量 7 题目评价 质量 7 ★★★★★ ★★★★☆ ★★★☆☆ ★★☆ ...
- 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1621 集合 [2017年6月计划 数论13]
P1621 集合 题目描述 现在给你一些连续的整数,它们是从A到B的整数.一开始每个整数都属于各自的集合,然后你需要进行一下的操作: 每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共 ...
- 洛谷P1390 公约数的和 [2017年6月计划 数论12]
P1390 公约数的和 题目描述 有一天,TIBBAR和LXL比赛谁先算出1~N这N个数中每任意两个不同的数的最大公约数的和.LXL还在敲一个复杂而冗长的程序,争取能在100s内出解.而TIBBAR则 ...
随机推荐
- Python学习day39-并发编程(各种锁)
figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...
- Spring cloud config client获取不到配置中心的配置
Spring cloud client在配置的时候,配置文件要用 bootstrap.properties 贴几个说明的链接.但是觉得说的依然不够详细,得空详查. 链接1 链接2 链接3 原文地址:h ...
- 启动zuul时候报错:The bean 'proxyRequestHelper', defined in class path resource [org/springframework/cloud/netflix/zuul
启动zuul时候报错:The bean 'proxyRequestHelper', defined in class path resource [org/springframework/cloud/ ...
- C# 读写 Photoshop PSD文件 操作类
分析了PSD的文件....才发现PSD的RGB色彩保存也是 先红 蓝 绿 这样保存的 ....麻烦的.. 另外8BIM好象没什么用..可以直接跳过..直接获取最后的图形信息就可以了.. 我只对一些PS ...
- wpf中在style的template寻找ControlTemplate和DataTemplate的控件
一.WPF中的两棵树 WPF中每个控件的Template都是由ControlTemplate构成,ControlTemplate包含了构成该控件的各种子控件,这些子控件就构成了VisualTree:而 ...
- osg::BlendFunc来设置透明度
osg::BlendFunc介绍 混合是什么呢?混合就是把两种颜色混在一起.具体一点,就是把某一像素位置原来的颜色和将要画上去的颜色,通过某种方式混在一起,从而实现特殊的效果. 假设我们需要 ...
- Leetcode75. Sort Colors颜色分类
给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0. 1 和 2 分别表示红色.白色和蓝色. ...
- PHP--自动回调接口,分批修改数据
/** * 修复 a表 生日格式问题 * @author qin */ public function update_birthday_one() { $this->load->model ...
- 使用poco再次封装redis
为方便程序对redis操作,我对poco的redis进行了再次封装,主要是针对自己应用需要的部分. 开发工具:netbean 系统环境:centos7 poco版本: poco-1.9.0-all 其 ...
- 网络编程-基础篇03(I/O模型)
好文传播,在此插个眼: 一文读懂高性能网络编程中的I/O模型