正解:二分+$dp$

解题报告:

传送门$QwQ$

这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$.

考虑现在二分的值为$mid$,若$mid\leq as$,则有$\frac{\sum p_i}{\sum s_i}\geq mid,\sum p_i-mid\cdot \sum s_i\geq 0$.

于是就把每个点的点权改为$mid\cdot s-p$.现在变成要选$K$个节点使得点权之和取$max$.

于是就树形$dp$呗?设$f_{i,j}$表示点$i$的子树中选了$j$个点的$max$,转移的时候强制点$i$必须要选就成.

$over$.

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define t(i) edge[i].to
#define ri register int
#define rc register char
#define rb register bool
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=+,inf=1e9;
const lf eps=1e-;
int n,K,sz[N];
lf f[N][N],q[N],tmp[N];
vector<int>V[N];
struct node{int s,p;}nod[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void merg(ri x,ri y)
{
rp(i,,K)tmp[i]=-inf;
rp(i,,sz[x])rp(j,,min(K-i,sz[y]))tmp[i+j]=max(f[x][i]+f[y][j],tmp[i+j]);
rp(i,,K)f[x][i]=max(f[x][i],tmp[i]);
}
void dfs(ri nw){ri siz=V[nw].size();sz[nw]=;rp(i,,siz-)dfs(V[nw][i]),merg(nw,V[nw][i]),sz[nw]+=sz[V[nw][i]];}
il bool check(lf dat){memset(f,-,sizeof(f));rp(i,,n)f[i][]=nod[i].p-dat*nod[i].s;dfs();return f[][K]>=;} int main()
{
freopen("4322.in","r",stdin);freopen("4322.out","w",stdout);
K=read()+;n=read();rp(i,,n){nod[i]=(node){read(),read()};V[read()].push_back(i);}
lf l=,r=;while(r-l>=eps){lf mid=(l+r)/;if(check(mid))l=mid;else r=mid;}printf("%.3lf\n",r);
return ;
}

洛谷$P4322\ [JSOI2016]$最佳团体 二分+$dp$的更多相关文章

  1. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  2. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  3. Luogu P4322 [JSOI2016]最佳团体

    JZdalao昨天上课讲的题目,话说JSOI的题目是真的不难,ZJOI的题目真的是虐啊! 题意很简单,抽象一下就是:有一棵树,一次只能选从根到某个节点上的链上的所有点,问从中取出k个节点所得到的总价值 ...

  4. p4322 [JSOI2016]最佳团体

    传送门 分析 我们不难发现这是一棵树 于是01分数规划然后树上dp即可 代码 #include<iostream> #include<cstdio> #include<c ...

  5. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  6. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  7. loj#2071. 「JSOI2016」最佳团体

    题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #inclu ...

  8. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  9. 【BZOJ4753】最佳团体(分数规划,动态规划)

    [BZOJ4753]最佳团体(分数规划,动态规划) 题面 BZOJ Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一 ...

随机推荐

  1. How to use AutoMapper

    http://docs.automapper.org/en/stable/Getting-started.html IMappingExpression<TSource, TDestinatio ...

  2. windows 下的 Apache 二级域名 目录绑定配置

    通常我们注册的域名都是顶级域名  如 www.potatog.com,我们希望这个域名可以访问服务器的不同网站或者不同功能等等 可能会这样 www.potatog.com/api 或者 www.pot ...

  3. SVN的使用与教程

    1.先下载SVN安装包 SVN安装教程

  4. laravel 实现微博第三方登陆

    https://blog.csdn.net/a12541254/article/details/79415550 1.安装 composer require socialiteproviders/we ...

  5. bnu 52037 Escape from Ayutthaya

    Escape from Ayutthaya Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on CodeFo ...

  6. 学习java注意的地方

    Java语言拼写上严格区分大小写: 一个Java源文件里可以定义多个Java类,但其中最多只能有一个类被定义成public类: 若源文件中包括了public类,源文件必须和该public类同名: 一个 ...

  7. git 删除时报 the branch is not fully merged 这是什么意思

    今天删除本地分支 git branch -d XX 提示: the branch XXX is not fully merged原因:XXX分支有没有合并到当前分支的内容 解决方法:使用大写的D 强制 ...

  8. POJ 2251宽搜、

    因为这个题做了两次犯了两次不同的错误. 第一次用的dfs死活都超时 第二次把定义队列定义在了全局变量的位置,导致连WA了几次.最后找到原因的我真的想一巴掌拍死自己 #include<cstdio ...

  9. java.lang.ClassCastException: com.sun.proxy.$Proxy6 cannot be cast to com.etc.service.serviceImpl.BankServiceImpl

    错误原因: java.lang.ClassCastException: com.sun.proxy.$Proxy6 cannot be cast to com.etc.service.serviceI ...

  10. 2019-8-2-WPF-从文件加载字体

    title author date CreateTime categories WPF 从文件加载字体 lindexi 2019-08-02 17:10:33 +0800 2018-2-13 17:2 ...