有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态。要求第i行第j列的格子只能参与mi,j次交换。

Solution

一个点拆三份,入点,主点,出点

入点向主点连边,主点向出点连边,设该点允许的交换次数为 \(x\) ,根据以下规则确定

  • 若为初态点,则入边限流 \(x/2\),出边限流 \((x+1)/2\)

  • 若为末态点,则入边限流 \((x+1)/2\),出边限流 \(x/2\)

  • 否则,入边限流 \(x/2\),出边限流 \((x+1)/2\)

\(S \to\) 初态点,末态点 \(\to T\),容量 \(1\),费用 \(0\)

八连通相互连边,容量 \(\infty\),费用 \(1\)

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll long long
#define reset(x) memset(x,0,sizeof x)
#define reset3f(x) memset(x,0x3f,sizeof x)
const int N = 1005; namespace flow {
const int N = 100005;
const int M = 1000005;
const int inf = 1e+12;
struct Edge {
int p, c, w, nxt = -1;
} e[N];
int s, t, tans, ans, cost, ind, bus[N], qhead = 0, qtail = -1, qu[M],vis[N], dist[N]; void graph_link(int p, int q, int c, int w) {
e[ind].p = q;
e[ind].c = c;
e[ind].w = w;
e[ind].nxt = bus[p];
bus[p] = ind;
++ind;
}
void make(int p, int q, int c, int w) {
graph_link(p, q, c, w);
graph_link(q, p, 0, -w);
}
int dinic_spfa() {
qhead = 0;
qtail = -1;
memset(vis, 0x00, sizeof vis);
memset(dist, 0x3f, sizeof dist);
vis[s] = 1;
dist[s] = 0;
qu[++qtail] = s;
while (qtail >= qhead) {
int p = qu[qhead++];
vis[p] = 0;
for (int i = bus[p]; i != -1; i = e[i].nxt)
if (dist[e[i].p] > dist[p] + e[i].w && e[i].c > 0) {
dist[e[i].p] = dist[p] + e[i].w;
if (vis[e[i].p] == 0)
vis[e[i].p] = 1, qu[++qtail] = e[i].p;
}
}
return dist[t] < inf;
}
int dinic_dfs(int p, int lim) {
if (p == t)
return lim;
vis[p] = 1;
int ret = 0;
for (int i = bus[p]; i != -1; i = e[i].nxt) {
int q = e[i].p;
if (e[i].c > 0 && dist[q] == dist[p] + e[i].w && vis[q] == 0) {
int res = dinic_dfs(q, min(lim, e[i].c));
cost += res * e[i].w;
e[i].c -= res;
e[i ^ 1].c += res;
ret += res;
lim -= res;
if (lim == 0)
break;
}
}
return ret;
}
void solve(int _s,int _t) {
s=_s; t=_t;
while (dinic_spfa()) {
memset(vis, 0x00, sizeof vis);
ans += dinic_dfs(s, inf);
}
}
void init() {
memset(bus, 0xff, sizeof bus);
}
} int n,m;
char a[N][N],b[N][N],c[N][N]; int idIn(int i,int j) {
return i*m-m+j+2;
} int idMid(int i,int j) {
return 2ll + n*m + i*m-m+j;
} int idOut(int i,int j) {
return 2ll + 2*n*m + i*m-m+j;
} int check(int i,int j) {
if(i && j && i<=n && j<=m) return 1;
return 0;
} signed main() {
flow::init();
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i]+1;
for(int i=1;i<=n;i++) cin>>b[i]+1;
for(int i=1;i<=n;i++) cin>>c[i]+1;
int cnt=0,tot=0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(a[i][j]=='1') cnt++;
if(b[i][j]=='1') tot++;
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(a[i][j]=='1') flow::make(1,idMid(i,j),1,0);
if(b[i][j]=='1') flow::make(idMid(i,j),2,1,0);
int x=c[i][j]-'0';
if(a[i][j]=='1' && b[i][j]=='0') {
flow::make(idIn(i,j),idMid(i,j),x/2,0);
flow::make(idMid(i,j),idOut(i,j),(x+1)/2,0);
}
else if(a[i][j]=='0' && b[i][j]=='1') {
flow::make(idIn(i,j),idMid(i,j),(x+1)/2,0);
flow::make(idMid(i,j),idOut(i,j),x/2,0);
}
else {
flow::make(idIn(i,j),idMid(i,j),x/2,0);
flow::make(idMid(i,j),idOut(i,j),(x+1)/2,0);
}
for(int k=i-1;k<=i+1;k++) {
for(int l=j-1;l<=j+1;l++) {
if(i!=k || j!=l) {
if(check(k,l)) flow::make(idOut(i,j),idIn(k,l),99,1);
}
}
}
}
}
flow::solve(1,2);
if(flow::ans==cnt && cnt==tot) cout<<flow::cost;
else cout<<-1;
}

[CQOI2012] 交换棋子 - 费用流的更多相关文章

  1. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  2. BZOJ2668: [cqoi2012]交换棋子(费用流)

    Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...

  3. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

  4. [CQOI2012][bzoj2668] 交换棋子 [费用流]

    题面 传送门 思路 抖机灵 一开始看到这题我以为是棋盘模型-_-|| 然而现实是骨感的 后来我尝试使用插头dp来交换,然后又惨死 最后我不得不把目光转向那个总能化腐朽为神奇的算法:网络流 思维 我们要 ...

  5. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  6. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  7. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  8. BZOJ2668:[CQOI2012]交换棋子(费用流)

    题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...

  9. [luoguP3159] [CQOI2012]交换棋子(最小费用最大流)

    传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: ...

随机推荐

  1. Microsoft.EntityFrameworkCore.Tools 相关命令

    一.前言 Entity Framework(后面简称EF)作为微软家的ORM,自然而然从.NET Framework延续到了.NET Core. 二.程序包管理器控制台 为了能够在控制台中使用命令行来 ...

  2. wow.js wow.min.js animate.css animate.min.css

    奉献给下载不到源码的小伙伴,下载到的请忽视 wow.js (function() { var MutationObserver, Util, WeakMap, getComputedStyle, ge ...

  3. 《手把手教你构建自己的 Linux 系统》学习笔记(5)

    交叉编译是什么? 交叉编译就是在一个系统上,编译生成另外一个系统运行的程序文件. 「硬件体系结构」和「操作系统」的关系是什么? 硬件体系结构也可以称为架构,主要是通过 CPU 的指令集来进行区分的,操 ...

  4. mongDb在node中的操作

    mongoDb 干嘛的:数据库,nosql(非关系型|缓存型) 场景:解决大规模数据集合多重数据种类 下载:https://www.mongodb.com/download-center 安装:htt ...

  5. PMP--1.2 PMBOK指南组成部分

    图1.2.5 ​ PMBOK指南关键组成部分在项目中的相互关系说明:项目生命周期中包含项目阶段,项目阶段结束之后就是阶段关口: 而项目管理过程和项目管理过程组以及项目管理知识领域都是为了项目生命周期服 ...

  6. Wix 快速开发安装包程序 (二)安装行为

    上一小节,主要介绍了构建最小级别的安装包,这个安装包所做的事情很简单,主要是打包好一些文件,然后放到用户机器的某个位置下面. 这个小节,主要是总结安装过程的各种行为如何使用Wix编写. 一.写注册表 ...

  7. CSS3结构类选择器补充

    :empty 没有子元素(包括文本节点)的元素 :not  否定选择器 <!DOCTYPE html> <html lang="en" manifest=&quo ...

  8. Fragment基础学习

    https://blog.csdn.net/lmj623565791/article/details/37970961

  9. 有关使用phpstudy搭建sqli-lab环境搭建时发生Uncaught Error: Call to undefined function mysql_connect()错误

    文章更新于2020-1-30 问题描述 Uncaught Error: Call to undefined function mysql_connect() 分析 经查php手册可知 mysql_co ...

  10. 删除Win10菜单中的幽灵菜单(ms-resource:AppName/Text )

    新建一个 .bat文件,输入以下内容 @echo off taskkill /f /im explorer.exe taskkill /f /im shellexperiencehost.exe ti ...