PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- java工作流系统jflow表单引擎字段扩展组件介绍
关键词:工作流快速开发平台 工作流流设计 业务流程管理 asp.net 开源工作流 bpm工作流系统 java工作流主流框架 自定义工作流引擎 表单设计器 流程设计器 装饰类图片 用于 ...
- 什么是AOP面向切面编程思想
一.什么是AOP? 1.AOP不是一种语言,是一种编程范式 常见的编程范式: 面向过程.面向对象.函数式编程.事件驱动编程等 2.AOP可以解决特定问题,不能解决所有问题. 3.是面向对象的补充,不是 ...
- C#实现把String字符串转化为SQL语句中的In后接的参数
实现把String字符串转化为In后可用参数代码: public string StringToList(string aa) { string bb1 = "("; if (!s ...
- 《Adaptive Density Map Generation for Crowd Counting》密集人群检测论文笔记
背景 密度图\(D_g\)的生成对于最终网络预测结果\(D_e\)至关重要,但是密度图\(D_g\)生成的过程中,高斯核的大小常常是手动设定的,并且对于不同的数据集,核大小和形状通常不一样.这些手动选 ...
- 卸载软件后,win10应用与功能中仍有残留,解决方案。
这个问题我已经找到解决办法了,首先打开“应用和功能”列表, 然后往下拉看到“相关设置”打开其中的“程序和功能”一项, 然后找出你想删除的应用进行卸载.
- .net Core3.0 +Nlog+Sqlserver
1.下载Nlog.Nlog.Web.AspNetCore包 2.添加NLog.config xml文件 资料https://github.com/NLog/NLog/wiki/Database-ta ...
- css基础-盒子模型+背景和列表
border-style的值: none 无 dotted 点状 dashed 虚线 solid 实线 double 双实线 margin: 垂直方向两个相邻元素都设置了外边距,那么外边距会发生合并 ...
- css字体样式+文本样式
font-family属性值:具体字体名或者字体集 如果是中文或者有单词之间有空格,需要加双引号 字体集: Serif (有装饰线) Sans-serif (无装饰线) Monospace Cursi ...
- 编译U-Boot时command not found的解决方法
我使用的U-Boot版本是u-boot-2012.10,编译的步骤为 cd u-boot-2012.10 make s5p_goni_config sudo make 然后,就会看到错误提示 /bin ...
- P2055 [ZJOI2009]假期的宿舍【二分图/最大流】
题目描述 学校放假了 · · · · · · 有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题. 比如 A 和 B 都是学校的学生,A 要回家,而 C 来看B,C 与 A 不认识 ...