Problem: time series classification

shapelet-based method: two issues

1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.

2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.

They propose a shapelet learning model: triple shapelet networks.

the imbalance of shapelets in minority class and majority class, to address this issue:

they use category-level and sample-level shapelets to improve the performance.

classification is to find the best discriminating features.

Introduction:

Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.

1. calculate the distances of shapelets and use these distances as discriminative features for classification.

shapelet transformation: find the top-k shapelets in a single pass.

to address two issues:

1. imbalance features issue:

they learn both types of features: dataset-level features and category-specific features.

2. deformation issue:

Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.

Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.

Thinking about:

1. does this classification method is influenced by imbalanced datasets? and how?

whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?

PP: Triple-shapelet networks for time series classification的更多相关文章

  1. How to Use Convolutional Neural Networks for Time Series Classification

    How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...

  2. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  3. 不平衡数据下的机器学习方法简介 imbalanced time series classification

    imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...

  4. 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记

    论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...

  5. PP: Modeling extreme events in time series prediction

    KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...

  6. PP: Composite visual mapping for time series visualization

    However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...

  7. describe neural networks as a series of computational steps via a directed graph.

    https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...

  8. Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks

    用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...

  9. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

随机推荐

  1. kernel定制,编译内核

    定制kernel,就需要手动编译内核 一,准备开发环境 1,包组:Development Tools,Server Platform Development 2,包:ncurses和ncurses-d ...

  2. 你没有见过的【高恪】船新版本(SX3000 NAT1 X86魔改)

    最近魔改了高恪SX3000 X86,做了如下更改: 开启了SSH 集成了插件(酸酸乳.V2RXY.SMB等等) 开启了NAT1 DIY了主题 精简了官方内置的无用应用和模块 截图(建议右击图片,在新标 ...

  3. SOA(Service-Oriented Architecture):面向服务的架构

    SOA (Service-Oriented Architecture):面向服务的架构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好的接口和协议联 ...

  4. Spring Bean自动装配有哪些方式?

    Spring 容器能够自动装配 Bean .也就是说,可以通过检查 BeanFactory 的内容让 Spring 自动解析 Bean 的协作者. 自动装配的不同模式: no - 这是默认设置,表示没 ...

  5. 通过Java代码获取系统信息

    在开发中,我们需要获取JVM中的信息,以及操作系统信息,内存信息,CPU信息,磁盘信息,网络信息等,通过Java的API不能获取内存等信息,需要sigar的第三方依赖包. ①:加入依赖 <dep ...

  6. 【Android】Retrofi的基础使用教程

    文章参考学习自 阳光沙滩 ,是我在B站上发现的宝藏Up主,超级棒! 在前段时间我写了一个java web后台,想做一个安卓端的打卡社区,后来发现请求和解析过于麻烦,就耽搁了. 趁着空闲,研究了一下大部 ...

  7. python中class的定义及使用

    #类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法. #对象:它是类的实例化. #方法:类中定义的函数. #类(Class) 由3个部分构成: ...

  8. 纪中10日T1 2313. 动态仙人掌

    纪中10日 2313. 动态仙人掌 (File IO): input:dinosaur.in output:dinosaur.out 时间限制: 1500 ms  空间限制: 524288 KB  具 ...

  9. 由于找不到opencv_world320d.dll,无法继续执行代码。解决方案

    将 opencv 安装路径 目录\opencv\build\x64\vc14\bin 中 3 个后缀是.dll 的应用程序扩展复制到 C:\Windows\System32 中 完美解决!

  10. C语言 if

    C语言 if C语言支持最基本的三种程序运行结构:顺序结构.选择结构.循环结构. 顺序结构:程序按顺序执行,不发生跳转. 选择结构:依据是否满足条件,有选择的执行相应功能. 循环结构:依据条件是否满足 ...