PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- You (oracle) are not allowed to use this program (crontab)
检查一台ORACLE数据库服务器的crontab作业(用户为oracle,实际环境中可能为oracle.也有可能是其它用户)时,发现出现下面提示信息: $ crontab -l You (orac ...
- 【JZOJ 5048】【GDOI2017模拟一试4.11】IQ测试
题目大意: 判断一个序列是否是另外一个序列删除若干个数字之后得到的. 正文: 我们可以定义两个指针,分别指向长序列和短序列. 拿样例来举例: 如果指针指的数相同,两个指针都往右跳: 如果不同,则指向长 ...
- VEH帮你定位程序崩溃地址
之前朋友有一个服务端程序,总是受到一些人的恶意漏洞攻击,没有源代码,只好反汇编修复了漏洞,并且使用WinLicense加保护授权. 漏洞总不是一次可以修复完的,恶意攻击并没有停止,然后加了WL保护程序 ...
- C#设计模式学习笔记:(7)桥接模式
本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/7699301.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲结构型设计模式的第二个模式--桥 ...
- nodemon的使用
nodemon是一种工具,通过在检测到目录中的文件更改时自动重新启动节点应用程序来帮助开发基于node.js的应用程序. nodemon并没有要求任何对你的代码或开发的方法中的额外变化.nodemon ...
- maven的核心概念——依赖
一.STS集成maven(以下是mac版的STS) 1.点击Spring Tool Suite,点击preferences maven中的installations 点击add,选择对应的路径即可 点 ...
- 【剑指Offer】58:二叉树的下一个结点
题目描述 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 题解一:递归 //既然给了二叉树的某个结点,且二叉树存 ...
- MVC的App_Data中看不到数据库mdf文件
点击运行后的页面去注册个账号,然后点击解决方案的‘显示所有文件就能看到了
- @RequestBody 和 @RequestParam(“test”) 的区别与联系
@RequestBody @RequestBody主要用来接收前端传递给后端的json字符串中的数据的(请求体中的数据的):GET方式无请求体,所以使用@RequestBody接收数据时,前端不能使用 ...
- javaweb利用javabean将数据库中内容遍历在页面输出
效果如下图 它所实现的就是把数据库中一个表中所有的数据一条一条以表格的形式输出在网页上, 实现方法如下 首先我们要从数据库读取数据,这里要借助javabean来方便我们传递数据 以上面的为例,我要输出 ...