PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- SRAM结构框图解
SRAM 即静态RAM.它也由晶体管组成,SRAM的高速和静态特性使它们通常被用来作为Cache存储器.计算机的主板上都有Cache插座. 下图所示的是一个SRAM的结构框图. 由上图看出SRAM一般 ...
- asp.net abp模块化开发之通用树2:设计思路及源码解析
一.前言 上一篇大概说了下abp通用树形模块如何使用,本篇主要分析下设计思路. 日常开发中会用到很多树状结构的数据,比如:产品的多级分类.省市区县,大多数系统也会用到类似“通用字典/数据字典”的功能, ...
- 【python数据挖掘】爬取豆瓣影评数据
概述: 爬取豆瓣影评数据步骤: 1.获取网页请求 2.解析获取的网页 3.提速数据 4.保存文件 源代码: # 1.导入需要的库 import urllib.request from bs4 impo ...
- console 打印消息时,可以使用 %c 指定随后的文本样式; %s 可引用参数变量。
1.console.log 使用 加%c console.log('%c Merry Christmas!!', 'color:green;background:yellow;text-shadow: ...
- akka设计模式系列-消息模型(续)
在之前的akka设计模式系列-消息模型中,我们介绍了akka的消息设计方案,但随着实践的深入,发现了一些问题,这里重新梳理一下设计方法,避免之前的错误.不当的观点给大家带来误解. 命令和事件 我们仍然 ...
- windows系统中如何删除文件路径过长的文件
Q:通常在使用npm安装包后,路径会变的非常的长,有时候无法手动删除文件: 这个时候可以选中文件点击>添加文件到压缩文件,在弹出出来的框中勾选 压缩后删除原文件,>最后删除压缩包
- 吴裕雄--天生自然 R语言数据可视化绘图(4)
par(ask=TRUE) # Basic scatterplot library(ggplot2) ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_poin ...
- NetCore文件上传校验返回未授权401,文件仍然执行上传操作,要如何解决呢
这是代码:https://files.cnblogs.com/files/suterfo/NetCoreTestPro.rar 运行步骤: 一.使用Visual Studio2017打开项目,并F5运 ...
- 【daily】Java枚举 - fastjson对enum的处理
目的 1.枚举值转换成完全的json: 2.对象中的枚举成员完全转换成json: 3.枚举类的全部值转换成json: 枚举定义 public enum SongsEnum { SAFE_AND_SOU ...
- CentOS7配置ftp
1.下载vsftpd yum install -y vsftpd 2.设置开机自启动 systemctl enable vsftpd.service 3.启动 systemctl start vsft ...