小白学 Python 数据分析(9):Pandas (八)数据预处理(2)

人生苦短,我用 Python
前文传送门:
小白学 Python 数据分析(2):Pandas (一)概述
小白学 Python 数据分析(3):Pandas (二)数据结构 Series
小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame
小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
小白学 Python 数据分析(7):Pandas (六)数据导入
小白学 Python 数据分析(8):Pandas (七)数据预处理
引言
前一篇文章我们介绍了数据预处理中数据有问题的几种情况以及一般处理办法。
很经常,当我们拿到数据的时候,首先需要确定拿到的是正确类型的数据,如果数据类型不正确,一般通过数据类型的转化
数据类型转化
大家应该都知道 Excel 中数据类型比较多,常用的有文本、数字、货币、时间、日期等等,在 Pandas 中,相对而言数据类型就少了很多,常用的有 int64 , float64 , object , datetime64 等等。
还是使用前面的示例,我们先看下当前数据表中的数据类型,这里使用的 dtypes ,示例如下:
import pandas as pd
# 相对路径
df = pd.read_excel("result_data.xlsx")
print(df)
# 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215.0 0 118.0 0 2019-11-23 23:00:10
1 cnblog 215.0 0 118.0 0 2019-11-23 23:00:10
2 juejin NaN 0 -2.0 1 2019-11-23 23:00:03
3 csdn 1652.0 69 0.0 24 2019-11-23 23:00:02
4 cnblog 650.0 3 NaN 0 2019-11-22 23:00:15
.. ... ... ... ... ... ...
404 juejin 212.0 0 -1.0 2 2020-02-20 23:00:02
405 csdn 1602.0 1 0.0 1 2020-02-20 23:00:01
406 cnblog 19.0 0 41.0 0 2020-02-21 23:00:05
407 juejin 125.0 1 -4.0 0 2020-02-21 23:00:02
408 csdn 1475.0 8 0.0 3 2020-02-21 23:00:02
print(df.dtypes)
# 输出结果
plantform object
read_num float64
fans_num int64
rank_num float64
like_num int64
create_date datetime64[ns]
dtype: object
当然,我们如果想单独知道某一列的数据类型,也可以这么用:
import pandas as pd
# 相对路径
df = pd.read_excel("result_data.xlsx")
print(df['read_num'].dtypes)
# 输出结果
float64
当我们需要转换数据类型的时候,可以使用 astype() 这个方法,在使用的时候讲需要转化的目标类型写在 astype() 后面括号里即可:
import pandas as pd
# 相对路径
df = pd.read_excel("result_data.xlsx")
print(df['fans_num'].astype('float64'))
# 输出结果
0 0.0
1 0.0
2 0.0
3 69.0
4 3.0
...
404 0.0
405 1.0
406 0.0
407 1.0
408 8.0
Name: fans_num, Length: 409, dtype: float64
添加索引
有些时候,我们拿到的数据表是没有索引的,如果没有索引, Pandas 会默认的为我们添加从 0 开始的自然数作为行索引。而列索引会默认取第一行。比如我们创建了一个没有表头的 Excel ,如下:

没有表头这样的数据看起来很难懂,我们先导入到 Pandas 中看下效果:
import pandas as pd
df1 = pd.read_excel("demo.xlsx")
print(df1)
# 输出结果
A1 1001 小红 1000
0 A2 1002 小王 2000
1 A3 1003 小明 3000
2 A4 1004 小朱 4000
3 A5 1005 小黑 5000
这时,我们想给这个数据表加上列索引,这里可以使用 columns ,如下:
import pandas as pd
df1 = pd.read_excel("demo.xlsx")
df1.columns = ['编号', '序号', '姓名', '消费金额']
print(df1)
# 输出结果
编号 序号 姓名 消费金额
0 A2 1002 小王 2000
1 A3 1003 小明 3000
2 A4 1004 小朱 4000
3 A5 1005 小黑 5000
现在我们有了列索引,但是如果这时我并不想用自动生成的自然数作为行索引,想替换成数据表中的序号,可以怎么做呢?
这里需要使用到的是 set_index() 这个方法,在括号中指明需要使用的列名即可:
import pandas as pd
df1 = pd.read_excel("demo.xlsx")
print(df1.set_index('编号'))
# 输出结果
序号 姓名 消费金额
编号
A2 1002 小王 2000
A3 1003 小明 3000
A4 1004 小朱 4000
A5 1005 小黑 5000
本篇的内容就到这里结束了,今天的内容有点短,溜了溜了~~
示例代码
老规矩,所有的示例代码都会上传至代码管理仓库 Github 和 Gitee 上,方便大家取用。
小白学 Python 数据分析(9):Pandas (八)数据预处理(2)的更多相关文章
- 小白学 Python 数据分析(10):Pandas (九)数据运算
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(11):Pandas (十)数据分组
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(12):Pandas (十一)数据透视表(pivot_table)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(13):Pandas (十二)数据表拼接
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(7):Pandas (六)数据导入
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(8):Pandas (七)数据预处理
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(15):数据可视化概述
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
随机推荐
- python 进程Queue
1.作用:进程之间的数据交互 2.常用方法 """ 对象.put() 作用:放入队列一个数据 对象.get() 作用:取队列一个数据,若队列没有值,则阻塞 对象.empt ...
- NABCD项目分析
Share软件 N(需求):我们设计的这款手机app名为share,旨在打造一款服务于大学生的软件,像qq,微信,微博等,这些社交软件大都服务范围太广,我们就是为了满足当代大学生为了本校学生交流方便, ...
- (分块暴力)Time to Raid Cowavans CodeForces - 103D
题意 给你一段长度为n(1 ≤ n ≤ 3·1e5)的序列,m (1 ≤ p ≤ 3·1e5)个询问,每次询问a,a+b,a+2b+...<=n的和 思路 一开始一直想也想不到怎么分,去维护哪些 ...
- Spring(三)核心容器 - ApplicationContext 上下文启动准备
目录 前言 正文 第一步:prepareRefresh 第二步:obtainFreshBeanFactory 第三步:prepareBeanFactory 第四步:postProcessBeanFac ...
- Thematic002.字符串专题
目录 Trie字典树 KMP AC自动机 Manacher 回文自动机 后缀数组 后缀自动机 Trie字典树 概念 我们先来看看什么是Trie字典树 可以发现,这棵树的每一条边都有一个字符 有一些点是 ...
- L1和L2:损失函数和正则化
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f ...
- lind.ddd博客笔记索引
先占位 整理 写博客呢 可以理解为一个动手的过程 写博客呢和实际动手也是一段差距
- BZOJ 3691 游行
题目传送门 分析: 没被访问的点要C费用,跑一次路要C费用 把这两个统一一下试试... 那就是每次不标记起点或者终点 那就是路径覆盖了2333 二分图,x 部 i 号点与 y 部 j 号点连 i 到 ...
- QDialog
QDialog设置setWindowFlags(Qt::FramelessWindowHint);后,dialog弹不出来,界面不显示: 在继承一个QDialog类并设置窗口为无边框时,如果调用set ...
- 【译】SQ3R学习法则
SQ3R 观察-提问-阅读-复述-回顾 背景 SQ3R是一种理解策略,可帮助学生在阅读时思考他们正在阅读的文章. SQ3R通常被归类为学习策略,通过教导学生在初次阅读一篇文章时如何阅读和像高效读者一样 ...