代码函数详解

tf.random.truncated_normal()函数

tf.truncated_normal函数随机生成正态分布的数据,生成的数据是截断的正态分布,截断的标准是2倍的stddev。

zip()函数

zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。如果各个可迭代对象的元素个数不一致,则返回的对象长度与最短的可迭代对象相同。利用 * 号操作符,与zip相反,进行解压。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 plt.plot(train_x, train_y, 'r.')
plt.grid(True)
plt.show() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 with tf.Session() as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer,feed_dict={X:x, Y:y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X:x, Y:y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x*w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show()

TensorFlow——LinearRegression简单模型代码的更多相关文章

  1. TensorFlow实现线性回归模型代码

    模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as ...

  2. TensorFlow的序列模型代码解释(RNN、LSTM)---笔记(16)

    1.学习单步的RNN:RNNCell.BasicRNNCell.BasicLSTMCell.LSTMCell.GRUCell (1)RNNCell 如果要学习TensorFlow中的RNN,第一站应该 ...

  3. FaceRank-人脸打分基于 TensorFlow 的 CNN 模型

    FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...

  4. tensorflow rnn 最简单实现代码

    tensorflow rnn 最简单实现代码 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf from te ...

  5. TensorFlow 训练好模型参数的保存和恢复代码

    TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...

  6. 用Tensorflow完成简单的线性回归模型

    思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在 ...

  7. Tensorflow模型代码调试问题

    背景: 不知道大家有没有这样的烦恼:在使用Tensorflow搭建好模型调试的过程中,经常会碰到一些问题,当时花了不少时间把这个问题解决了,一段时间后,又出现了同样的问题,却怎么也不记得之前是怎么解决 ...

  8. Python Tensorflow下的Word2Vec代码解释

    前言: 作为一个深度学习的重度狂热者,在学习了各项理论后一直想通过项目练手来学习深度学习的框架以及结构用在实战中的知识.心愿是好的,但机会却不好找.最近刚好有个项目,借此机会练手的过程中,我发现其实各 ...

  9. Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...

随机推荐

  1. C#的选择语句

    一.选择语句 if,else if是如果的意思,else是另外的意思,if'后面跟()括号内为判断条件,如果符合条件则进入if语句执行命令.如果不符合则不进入if语句.else后不用加条件,但是必须与 ...

  2. tensorflow -gpu安装,史上最新最简单的途径(不用自己装cuda,cdnn)

    tensorflow -gpu安装首先,安装Anoconda1. 官网下载点我: 2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装. 如图,打上勾之后,一路n ...

  3. HDU 5971"Wrestling Match"(二分图染色)

    传送门 •题意 给出 n 个人,m 场比赛: 这 m 场比赛,每一场比赛中的对决的两人,一个属于 "good player" 另一个属于 "bad player" ...

  4. H5 移动端获取当前位置

    3种方法:1.H5自带的方法,获取经纬度2.通过地图提供的JS.获取位置3.通过微信的API(这个需要公众号 / 小程序) 1.通过H5自带的获取经纬度的方法 优点: 需要引用的资源较少,H5自带的方 ...

  5. idea运行项目时报错:Error:java无效的源发行版:1.8

    解决办法:project structure中设置 JDK 和language 匹配即可.如图: 另外如果有maven,需要把maven中JDK版本设置成一样的.

  6. git 安装及基本配置

    git 基本上来说是开发者必备工具了,在服务器里没有 git 实在不太能说得过去.何况,没有 git 的话,面向github编程 从何说起,如同一个程序员断了左膀右臂. 你对流程熟悉后,只需要一分钟便 ...

  7. 在eclipse动态网页项目中,编写web.xml时,servlet标签报错.

    cvc-complex-type.2.4.b: The content of element 'servlet' is not complete. One of '{"http:// jav ...

  8. CodeForces - 922D Robot Vacuum Cleaner (贪心)

    Pushok the dog has been chasing Imp for a few hours already. Fortunately, Imp knows that Pushok is a ...

  9. KAFKA报错:COMMIT CANNOT BE COMPLETED SINCE THE GROUP HAS ALREADY REBALANCED AND ASSIGNED THE PARTITIONS TO ANOTHER MEMBER

    转载:https://www.greenhtml.com/archives/Commit-cannot-be-completed-since-the-group-has-already-rebalan ...

  10. Java数据库操作学习

    JDBC是java和数据库的连接,是一种规范,提供java程序与数据库的连接接口,使用户不用在意具体的数据库.JDBC类型:类型1-JDBC-ODBC桥类型2-本地API驱动类型3-网络协议驱动类型4 ...