UVA11916 Emoogle Grid
Emoogle Grid
You have to color an M × N (1 ≤ M, N ≤ 108 ) two dimensional grid. You will be provided K (2 ≤ K ≤ 108 ) different colors to do so. You will also be provided a list of B (0 ≤ B ≤ 500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top. While coloring the grid, you have to follow these rules – 1. You have to color each cell which is not blocked. 2. You cannot color a blocked cell. 3. You can choose exactly one color from K given colors to color a cell. 4. No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color. Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn’t want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem. But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the ‘number of rows’. He didn’t find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the ‘number of rows’ and the answer file; you have to find the number of rows he might have used for this problem. Input Input starts with an integer T (T ≤ 150), denoting the number of test cases. Each test case starts with a line containing four integers N, K, B and R (0 ≤ R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y (1 ≤ x ≤ M, 1 ≤ y ≤ N), denoting the row and column number of a blocked cell. All the cells will be distinct. Output For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case. Sample Input 4 3 3 0 1728 4 4 2 186624 3 1 3 3 2 5 2 20 1 2 2 2 2 3 0 989323 Sample Output Case 1: 3 Case 2: 3 Case 3: 2 Case 4: 20
这题先看已知部分和已知部分的下一行,不难统计出方案数cmt
每一加一行未知部分,会增加(k - 1)^m
解一个cnt * ((k - 1)^m)^p = r mod MOD
BSGS即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#include <utility>
#include <vector>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
inline void swap(long long &a, long long &b)
{
long long tmp = a;a = b;b = tmp;
}
inline void read(long long &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f;
const long long MAXB = + ;
const long long MOD = ;
long long t, n, m, k, b, r, x[MAXB], y[MAXB], ma, cnt;
long long pow(long long a, long long b, long long mod)
{
long long r = , base = a;
for(;b;b >>= )
{
if(b & ) r *= base, r %= mod;
base *= base, base %= mod;
}
return r;
}
long long ni(long long x, long long mod)
{
return pow(x, mod - , MOD);
}
std::map<std::pair<int, int>, int> mp;
std::map<int, int> mmp;
//求a^m = b % mod
long long BSGS(long long a, long long b, long long mod)
{
long long m = sqrt(mod), tmp = , ins = ni(pow(a, m,mod), mod);
mmp.clear();
for(register long long i = ;i < m;++ i)
{
if(!mmp.count(tmp)) mmp[tmp] = i;
tmp = tmp * a % MOD;
}
for(register long long i = ;i < m;++ i)
{
if(mmp.count(b)) return i * m + mmp[b];
b = (b * ins) % MOD;
}
return -;
} //计算可变部分方案数
long long count()
{
long long tmp = m;//有k种涂法的方案数
for(register long long i = ;i <= b;++ i)
{
if(x[i] != n && !mp.count(std::make_pair(x[i] + , y[i]))) ++ tmp;
if(x[i] == ) -- tmp;
}
return pow(k, tmp, MOD) * pow(k - , n * m - tmp - b, MOD) % MOD;
} long long solve()
{
long long cnt = count();
if(cnt == r) return n;
long long tmp = ;
for(register long long i = ;i <= b;++ i)
if(x[i] == n) ++ tmp;
cnt = cnt * pow(k, tmp, MOD) % MOD * pow(k - , m - tmp, MOD) % MOD;
++ n;
if(cnt == r) return n;
return (BSGS(pow(k - , m, MOD), r * ni(cnt, MOD) % MOD, MOD) + n)%MOD;
} int main()
{
read(t);
for(register long long v = ;v <= t;++ v)
{
read(m), read(k), read(b), read(r);
n = ;
mp.clear();
for(register long long i = ;i <= b;++ i)
{
read(x[i]), read(y[i]);
mp[std::make_pair(x[i], y[i])] = ;
n = max(n, x[i]);
}
printf("Case %lld: %lld\n", v, solve());
}
return ;
}
UVA11916
UVA11916 Emoogle Grid的更多相关文章
- [uva11916] Emoogle Grid (离散对数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Emoogle Grid You have to color an MxN ( ...
- uva11916 Emoogle Grid (BSGS)
https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...
- UVA 11916 Emoogle Grid(同余模)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...
- uva 11916 Emoogle Grid
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- Uva_11916 Emoogle Grid
题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种 ...
- UVA - 11916 Emoogle Grid (组合计数+离散对数)
假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1 ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
随机推荐
- Spring AspectJ 切入点语法详解(7)
1.Spring AOP支持的AspectJ切入点指示符 切入点指示符用来指示切入点表达式目的,,在Spring AOP中目前只有执行方法这一个连接点,Spring AOP支持的AspectJ切入点指 ...
- ASP.NET中的DEC加密解密过程
本文章分享自 青青果树园的博客,地址是:http://www.cnblogs.com/qqingmu/archive/2008/01/10/1034168.html 我们做网页时经常会遇到URL传输( ...
- Python全栈开发:configparser模块
#!/usr/bin/env python # -*- coding;utf-8 -*- import configparser # 创建对象 conn = configparser.ConfigPa ...
- html--图片背景兼容,兼容IE6
在IE6中对图片格式png24支持度不高, 如果使用的图片格式是png24,则会导致透明效果无法正常显示 解决方法: 1.可以使用png8来代替png24,即可解决问题, 但是使用png8代替png2 ...
- leetcode 131 Palindrome Pairs
lc131 Palindrome Pairs 解法1: 递归 观察题目,要求,将原字符串拆成若干子串,且这些子串本身都为Palindrome 那么挑选cut的位置就很有意思,后一次cut可以建立在前一 ...
- 8年前诞生于淘宝,细数阿里云RPA 的前世今生!
9月10日,踏入55岁的马云正式卸任阿里巴巴董事局主席一职,由阿里巴巴集团CEO张勇接任.公寓创业.西湖论剑.美国敲钟,从成立到登顶中国最值钱的公司,阿里巴巴只用了20年. 阿里云RPA,2011年诞 ...
- 0829NOIP模拟测试赛后总结
这次发誓不会咕咕咕! 80分rank30完美爆炸. 拿到题目苏轼三连???貌似三篇古诗文我都会背啊hhh.爆零警告 T1没啥思路,打完暴力后想了大约20分钟决定分解个因数,在b次方中每一次方选择一个约 ...
- arguments的介绍(一)
arguments 是一个类数组对象.代表传给一个function的参数列表. 1.1 arguments length arguments 是个类数组对象,其包含一个 length 属性,可以用 a ...
- memcache课程---2、php如何操作memcache
memcache课程---2.php如何操作memcache 一.总结 一句话总结: windows下装好memcache.exe,装好memcache的php扩展之后,然后使用memcache函数库 ...
- 深入浅出 Java Concurrency (25): 并发容器 part 10 双向并发阻塞队列 BlockingDeque[转]
这个小节介绍Queue的最后一个工具,也是最强大的一个工具.从名称上就可以看到此工具的特点:双向并发阻塞队列.所谓双向是指可以从队列的头和尾同时操作,并发只是线程安全的实现,阻塞允许在入队出队不满足条 ...