UVA11916 Emoogle Grid
Emoogle Grid
You have to color an M × N (1 ≤ M, N ≤ 108 ) two dimensional grid. You will be provided K (2 ≤ K ≤ 108 ) different colors to do so. You will also be provided a list of B (0 ≤ B ≤ 500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top. While coloring the grid, you have to follow these rules – 1. You have to color each cell which is not blocked. 2. You cannot color a blocked cell. 3. You can choose exactly one color from K given colors to color a cell. 4. No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color. Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn’t want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem. But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the ‘number of rows’. He didn’t find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the ‘number of rows’ and the answer file; you have to find the number of rows he might have used for this problem. Input Input starts with an integer T (T ≤ 150), denoting the number of test cases. Each test case starts with a line containing four integers N, K, B and R (0 ≤ R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y (1 ≤ x ≤ M, 1 ≤ y ≤ N), denoting the row and column number of a blocked cell. All the cells will be distinct. Output For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case. Sample Input 4 3 3 0 1728 4 4 2 186624 3 1 3 3 2 5 2 20 1 2 2 2 2 3 0 989323 Sample Output Case 1: 3 Case 2: 3 Case 3: 2 Case 4: 20
这题先看已知部分和已知部分的下一行,不难统计出方案数cmt
每一加一行未知部分,会增加(k - 1)^m
解一个cnt * ((k - 1)^m)^p = r mod MOD
BSGS即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#include <utility>
#include <vector>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
inline void swap(long long &a, long long &b)
{
long long tmp = a;a = b;b = tmp;
}
inline void read(long long &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f;
const long long MAXB = + ;
const long long MOD = ;
long long t, n, m, k, b, r, x[MAXB], y[MAXB], ma, cnt;
long long pow(long long a, long long b, long long mod)
{
long long r = , base = a;
for(;b;b >>= )
{
if(b & ) r *= base, r %= mod;
base *= base, base %= mod;
}
return r;
}
long long ni(long long x, long long mod)
{
return pow(x, mod - , MOD);
}
std::map<std::pair<int, int>, int> mp;
std::map<int, int> mmp;
//求a^m = b % mod
long long BSGS(long long a, long long b, long long mod)
{
long long m = sqrt(mod), tmp = , ins = ni(pow(a, m,mod), mod);
mmp.clear();
for(register long long i = ;i < m;++ i)
{
if(!mmp.count(tmp)) mmp[tmp] = i;
tmp = tmp * a % MOD;
}
for(register long long i = ;i < m;++ i)
{
if(mmp.count(b)) return i * m + mmp[b];
b = (b * ins) % MOD;
}
return -;
} //计算可变部分方案数
long long count()
{
long long tmp = m;//有k种涂法的方案数
for(register long long i = ;i <= b;++ i)
{
if(x[i] != n && !mp.count(std::make_pair(x[i] + , y[i]))) ++ tmp;
if(x[i] == ) -- tmp;
}
return pow(k, tmp, MOD) * pow(k - , n * m - tmp - b, MOD) % MOD;
} long long solve()
{
long long cnt = count();
if(cnt == r) return n;
long long tmp = ;
for(register long long i = ;i <= b;++ i)
if(x[i] == n) ++ tmp;
cnt = cnt * pow(k, tmp, MOD) % MOD * pow(k - , m - tmp, MOD) % MOD;
++ n;
if(cnt == r) return n;
return (BSGS(pow(k - , m, MOD), r * ni(cnt, MOD) % MOD, MOD) + n)%MOD;
} int main()
{
read(t);
for(register long long v = ;v <= t;++ v)
{
read(m), read(k), read(b), read(r);
n = ;
mp.clear();
for(register long long i = ;i <= b;++ i)
{
read(x[i]), read(y[i]);
mp[std::make_pair(x[i], y[i])] = ;
n = max(n, x[i]);
}
printf("Case %lld: %lld\n", v, solve());
}
return ;
}
UVA11916
UVA11916 Emoogle Grid的更多相关文章
- [uva11916] Emoogle Grid (离散对数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Emoogle Grid You have to color an MxN ( ...
- uva11916 Emoogle Grid (BSGS)
https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可 ...
- UVA 11916 Emoogle Grid(同余模)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...
- uva 11916 Emoogle Grid
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- Uva_11916 Emoogle Grid
题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种 ...
- UVA - 11916 Emoogle Grid (组合计数+离散对数)
假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1 ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
随机推荐
- MybatisPlus联合分页查询
跟单表分页查询差不多 1.编写查询语句 public interface QuestionMapper extends BaseMapper<Question> { @Select(&qu ...
- SQL Serve 临时表
SQL Server 支持临时表.临时表就是那些名称以井号 (#) 开头的表.如果当用户断开连接时没有除去临时表,SQL Server 将自动除去临时表.临时表不存储在当前数据库内,而是存储在系统数据 ...
- Spark历险记之编译和远程任务提交
Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apach ...
- nginx源码分析-源码结构
本文主要简单介绍nginx源码目录结构.程序编译流程.如何构建学习nginx的环境等.本文以及后续nginx源码分析文章是基于nginx当前(2009-02-27)的稳定版本0.6.35进行的分析,该 ...
- Django中static文件的引入
1. 在django project中创建 static文件夹 2.settings.py中配置要在 STATIC_URL = '/static/' 下边 STATICFILES_DIRS = [ ...
- Qt分割线
方法:使用QFrame QFrame * line = new QFrame(); line->setFrameShape(QFrame::HLine); line->setFrameSh ...
- 辨析JspWriter和PrintWriter
JspWriter和PrintWriter的区别? JspWriter相当于带缓冲的PrintWriter 如何控制out缓冲? 通过设置JSP页面page指令的buffer属性, 可以调整out缓冲 ...
- 深入理解Java虚拟机(类加载机制)
文章首发于微信公众号:BaronTalk 上一篇文章我们介绍了「类文件结构」,这一篇我们来看看虚拟机是如何加载类的. 我们的源代码经过编译器编译成字节码之后,最终都需要加载到虚拟机之后才能运行.虚拟机 ...
- E. Present for Vitalik the Philatelist 反演+容斥
题意:给n个数\(a_i\),求选一个数x和一个集合S不重合,gcd(S)!=1,gcd(S,x)==1的方案数. 题解:\(ans=\sum_{i=2}^nf_ig_i\),\(f_i\)是数组中和 ...
- C++ Builder获取系统文件的路径
取得路径的程序:(注意红色字体,由于博客显示问题,所以中间加了空格,大家自己把空格去掉即可) // -------------------------------------------------- ...