CF939F Cutlet (单调队列优化DP)
题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k<=100$
神仙单调队列优化$DP$, [NOI2005]瑰丽华尔兹 也有类似的压时间段的套路,但这道题可比那道题难多了。
朴素$O(n^2)$的$DP$没什么好说的,我们要想办法把它优化成$O(nk)$的
定义$f[i][j]$表示第$i$个时间段内,朝上的面(现在没被煎的)被煎的时间是$j$
1.观察翻转的过程,貌似在一个连续的时间段内翻转2次以上就是没有意义的 ,因为可以翻过去再翻回来
2.貌似并不一定要在整数时间翻转,但这种情况只在翻转1次的情况下有意义,所以整体把时间*2
然后,分情况讨论$DP$转移
1.翻0次,朝上的面被煎的时间不变,$f[i][j]=f[i-1][j]$,无需任何优化
2.翻2次,朝上的面被至多额外煎$r_{i}+l_{i}$秒,枚举上一次当前面被煎的时间$k$,可得$f[i][j]=min(f[i][k])+2\;(k<=j)$
对于这种情况,正序枚举$j$,单调队列优化$DP$即可,$j-k>r_{i}+l_{i}$的弹出队列
3.翻1次,原来朝上的面被翻到了下面,设现在的上面是$a$面,下面是$b$面,则$a$面被煎了$j$秒,$b$面被煎了$r_{i}-j$秒
那么上一次$a$面被煎的时间是$k$,此时$a$面朝下,朝上的面是$b$面,被煎的时间是$r_{i-1}-k$,可得$f[i][j]=min(f[i-1][r_{i}-k])+1$
因为是$-k$,要倒序枚举$j$,同样用单调队列优化,$k-j>r_{i}+l_{i}$弹出队列即可
虽然空间能开下$O(nk)$,但用滚动数组跑得飞快
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 205
#define M 401000
#define dd double
#define inf 0x3f3f3f3f
#define rint register int
using namespace std; int n,K,cnt;
int l[N],r[N],t[N];
int f[][M],que[M]; int main()
{
scanf("%d%d",&n,&K);
for(int i=;i<=K;i++){
scanf("%d%d",&l[i],&r[i]);
t[++cnt]=l[i]<<,t[++cnt]=r[i]<<;
}
memset(f,0x3f,sizeof(f));
f[][]=;int now=,pst=;
n<<=;
for(int i=;i<=cnt;i++)
{
if(i&) continue;
int hd=,tl=;
for(rint j=;j<=t[i];j++)
f[now][j]=inf;
for(rint j=;j<=t[i];j++)
{
f[now][j]=min(f[now][j],f[pst][j]);
while(hd<=tl&&f[pst][j]<=f[pst][que[tl]])
tl--;
que[++tl]=j;
while(hd<=tl&&j-que[hd]>t[i]-t[i-])
hd++;
f[now][j]=min(f[now][j],f[pst][que[hd]]+);
}
hd=,tl=;
for(rint j=t[i];j>=;j--)
{
while(hd<=tl&&f[pst][t[i]-j]<=f[pst][t[i]-que[tl]])
tl--;
que[++tl]=j;
while(hd<=tl&&que[hd]-j>t[i]-t[i-])
hd++;
f[now][j]=min(f[now][j],f[pst][t[i]-que[hd]]+);
}
swap(now,pst);
}
if(f[pst][n]==inf) printf("Hungry\n");
else printf("Full\n%d\n",f[pst][n]);
return ;
}
CF939F Cutlet (单调队列优化DP)的更多相关文章
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
- BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP
题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...
随机推荐
- vue 动态拼接地址,使用本地的图片不显示
<el-col :span="4" v-for="(item, index) in listData" :key="index"> ...
- [luogu 2568] GCD (欧拉函数)
题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入样例#1: 4 输出样例#1: 4 ...
- vue定义对象变量并合并成新的对象
背景: 一般情况下,向后台发送数据请求会存在公共的变量,为了避免每一个相同部分的变量都重新定义,则想出以下解决方案: 例如一下:function,version,Authorization是公共请求部 ...
- Python学习笔记(一):基本数据类型
在Python3种,有六种标准数据类型: 数字(Number) 字符串(String) 列表(List) 元组(Tuple) 集合(Set) 字典(Dictionary) 这六种数据类型中,数字类型和 ...
- 2019-03-14 Python爬虫问题 爬取网页的汉字打印出来乱码
html = requests.get(YieldCurveUrl, headers=headers) html=html.content.decode('UTF-8') # print(html) ...
- git pull 跟 fetch的区别
今天在公司碰到个问题,公司不使用master分支作为主分支,而使用release分支作为主分支,这就碰到了个问题,也就是当clone一个项目下来的时候,如果master跟release分支有冲突,就不 ...
- CSS隐藏overflow默认滚动条同时保留滚动效果
主要应用于移动端场景,仿移动端滚动效果.对于隐藏滚动条,众所周知overflow:hidden,但是想要的滚动效果也没了. 所以对于移动端webkit内核提供一个伪类选择器: .element::-w ...
- nodejs安装与概述
第一部分:安装与测试 1 官方下载地址 https://nodejs.org/en/ 2 测试是否安装成功? window下打开CMD窗口 输入:node -v => 显示安装的nodej ...
- oracle 数据类型及函数
第一节:字符串类型及函数 字符类型分 3 种,char(n) .varchar(n).varchar2(n) : char(n)固定长度字符串,假如长度不足 n,右边空格补齐: varchar(n)可 ...
- MyBatis学习总结(19)——Mybatis传多个参数(三种解决方案)
据我目前接触到的传多个参数的方案有三种. 第一种方案 DAO层的函数方法 Public User selectUser(String name,String area); 对应的Mapper.xm ...