首先要差分+离散化。

然后就是求形如ABA的串有多少,其中B的长度确定为k。

我们用到了设置关键点的思想。我们枚举A的长度L。然后在\(1,1+L,1+L*2,1+L*3。。。\)设置关键点。然后我们枚举这些关键点,试图求出跨过这个关键点的长度为L的在B左边的A有多少个。

可以证明这样可以做到不重不漏,因为A的长度为L至少跨过一个关键点。

然后这个点的贡献就怎么算?我们先处理出后缀数组。然后对枚举的关键点i和i+L+k求LCP和LCS。贡献就是(min(LCP,L)+min(LCS,L)-1)-L+1。为什么是这个呢?

当K=4,L=3时,如图

实际上我们是确定了左边A的区间就是\([i-LCP+1,i+LCS-1]\),然后A的个数就是长度-L+1,因为考虑到不跨过关键点要对L取min。为了排除负数贡献,最后这个贡献还要对0取max。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=100100;
int ans,n,a[N],b[N],k;
struct SA{
int c[N],x[N],y[N],m,sa[N],rk[N],height[N],mn[N][20],s[N];
void get_sa(){
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]=s[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int num=0;
for(int i=n-k+1;i<=n;i++)y[++num]=i;
for(int i=1;i<=n;i++)if(sa[i]>k)y[++num]=sa[i]-k;
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
for(int i=1;i<=n;i++)swap(x[i],y[i]);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(n==num)break;
m=num;
}
}
void get_height(){
int k=0;
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int i=1;i<=n;i++){
if(rk[i]==1)continue;
if(k)k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
void pre_work(){
for(int i=1;i<=n;i++)mn[i][0]=height[i];
int len=log2(n);
for(int j=1;j<=len;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
mn[i][j]=min(mn[i][j-1],mn[i+(1<<j-1)][j-1]);
}
int getlcp(int l,int r){
if(l>r)swap(l,r);
l++;
int len=log2(r-l+1);
return min(mn[l][len],mn[r-(1<<len)+1][len]);
}
}A,B;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read();k=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<n;i++)a[i]=a[i+1]-a[i],b[i]=a[i];
n--;
sort(b+1,b+1+n);
int tot=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+1+tot,a[i])-b;
for(int i=1;i<=n;i++)A.s[i]=a[i],B.s[i]=a[n-i+1];
A.m=B.m=51000;
A.get_sa();A.get_height();A.pre_work();
B.get_sa();B.get_height();B.pre_work();
for(int i=1;i<=n;i++)
for(int j=1;j+i+k<=n;j+=i)
ans+=max(min(i,A.getlcp(A.rk[j],A.rk[j+i+k]))+min(i,B.getlcp(B.rk[n-j+1],B.rk[n-(j+i+k)+1]))-1,i-1)-(i-1);
printf("%d",ans);
return 0;
}

BZOJ 2119 股市的预测(后缀数组)的更多相关文章

  1. BZOJ 2119: 股市的预测 [后缀数组 ST表]

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 331  Solved: 153[Submit][Status][Discuss ...

  2. BZOJ 2119 股市的预测 (后缀数组+RMQ)

    题目大意:求一个字符串中形如$ABA$的串的数量,其中$B$的长度是给定的 有点像[NOI2016]优秀的拆分这道题 先对序列打差分,然后离散,再正反跑$SA$,跑出$st$表 进入正题 $ABA$串 ...

  3. 【BZOJ-2119】股市的预测 后缀数组

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 334  Solved: 154[Submit][Status][Discuss ...

  4. BZOJ 2119: 股市的预测 SA

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 434  Solved: 200[Submit][Status][Discuss ...

  5. 【BZOJ2119】股市的预测 后缀数组+分块

    [BZOJ2119]股市的预测 Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰 ...

  6. ●BZOJ 2119 股市的预测

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2119 题解: 这个题很好的. 首先把序列转化为差分序列,问题转化为找到合法的子序列,使得去除 ...

  7. bzoj 2119 股市的预测 —— 枚举关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 思路就是对于这个形如 ABA 的串,枚举 A 的长度,并按照长度分出几块,找到一些关键 ...

  8. bzoj 2119 股市的预测——枚举长度的关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 就是找差分序列上中间差 m 的相等的两段. 考虑枚举这样一段的长度 L .可以把序列分 ...

  9. BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)

    转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...

随机推荐

  1. ZBrush 4R7中自定义笔刷

    为了便于雕刻,ZBrush®很人性化地设计了自定义笔刷.随着ZBrush软件版本不断更新,功能也在不断完善.只是在笔刷面板ZBrush软件就为用户提供了上百种之多,如果我们想要用某种笔刷,一个个找起来 ...

  2. 使用C++部署Keras或TensorFlow模型

    本文介绍如何在C++环境中部署Keras或TensorFlow模型. 一.对于Keras, 第一步,使用Keras搭建.训练.保存模型. model.save('./your_keras_model. ...

  3. Node Sass does not yet support your current environment: Windows 64-bit然如何解决,cnpm此问题解决方法

    这里直接说了node sass不支持当前环境,所以可以直接删掉原来不支持本机的node sass,再重新安装就行了 删除: npm uninstall --save node-sass 安装: npm ...

  4. gcp – 源于CP的高级命令行文件拷贝工具

    作者:linux 出处:http://linux.cn/thread/11868/1/1/ gcp – 源于CP的高级命令行文件拷贝工具 几周前,我们讨论了高级拷贝(修改于cp命令,让其可以显示复制进 ...

  5. vue 页面跳转及参数传递和接收

    跳转: this.$router.push({name: 'My',params:{ id:'1',name:'anson'}});   接收: {{this.$route.params.id}}

  6. 【Python 学习】通过while循环和for循环猜测年龄

    Python中可以通过while和for循环来限制猜测年龄的次数 1. 在猜测年龄的小程序中,不加循环的代码是这样的: age_of_yu = 23 guess_age = int(input(&qu ...

  7. crm 系统项目(二) admin 后台操作表格

    crm 系统项目(二) admin 后台操作表格 1. app下创建 templates  运行的时候 先找全局的templates——> 按照app的注册顺序找templates中的文件 2. ...

  8. ASP.NET-前台view返回model集合

    有时操作列表的时候想一次提交一个model集合,这样后台controller直接接受后就可以直接进行操作了,不用使用js,比较方便,也体现了MVC的Binding模式的优势,方法如下: 准备: 1.两 ...

  9. 杭电1596 find the safest road

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  10. C++模板中的静态

    #include <iostream> #include <stdlib.h> using namespace std; template<class T> cla ...