Linux学习之socket编程(二)

1.C/S模型——UDP

UDP处理模型

  由于UDP不需要维护连接,程序逻辑简单了很多,但是UDP协议是不可靠的,实际上有很多保证通讯可靠性的机制需要在应用层实现。多保证通讯可靠性的机制需要在应用层实现。编译运行server,在两个终端里各开一个client与server交互,看看server是否具有并发服务的能力。用Ctrl+C关闭server,然后再运行server,看此时client还能否和server联系上。和前面TCP程序的运行结果相比较,体会无连接的含义。

/* server.c */

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include "wrap.h"
#define MAXLINE 80
#define SERV_PORT 8000 int main(void)
{
struct sockaddr_in servaddr, cliaddr;//用于IPv4的地址
socklen_t cliaddr_len;
int sockfd;//文件描述符
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];//16 Bytes
int i, n;
/*构造用于UDP通信的套接字*/
sockfd = socket(AF_INET, SOCK_DGRAM, 0);// bzero(&servaddr, sizeof(servaddr));//将地址清零
//设置地址
servaddr.sin_family = AF_INET;/*IPv4*/
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);//网络字节数,本地任意IP
servaddr.sin_port = htons(SERV_PORT);
bind(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)); printf("Accepting connections ...\n");
while (1) {
cliaddr_len = sizeof(cliaddr); n = recvfrom(sockfd, buf, MAXLINE, 0, (struct sockaddr *)&cliaddr, &cliaddr_len); if (n == -1)
perr_exit("recvfrom error");
printf("received from %s at PORT %d\n", inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),
ntohs(cliaddr.sin_port)); for (i = 0; i < n; i++)
buf[i] = toupper(buf[i]);//小写转大写 //发送数据
n = sendto(sockfd, buf, n, 0, (struct sockaddr *)&cliaddr, sizeof(cliaddr)); if (n == -1)
perr_exit("sendto error");
}
}
/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include "wrap.h"
#define MAXLINE 80
#define SERV_PORT 8000
int main(int argc, char *argv[])
{
struct sockaddr_in servaddr;
int sockfd, n;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
socklen_t servaddr_len; sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
servaddr.sin_port = htons(SERV_PORT); while(fgets(buf, MAXLINE, stdin) != NULL) { n = sendto(sockfd, buf, strlen(buf), 0, (struct sockaddr *)&servaddr, sizeof(servaddr));
if (n == -1)
perr_exit ("sendto error"); n = recvfrom(sockfd, buf, MAXLINE, 0, NULL, 0); if (n == -1)
perr_exit("recvfrom error");
write(STDOUT_FILENO, buf, n);//写到屏幕上
}
close(sockfd);
return 0;
}

2.出错处理封装函数   上面的例子不仅功能简单,而且简单到几乎没有什么错误处理,我们知道,系统调用不能保证每次都成功,必须进行出错处理,这样一方面可以保证程序逻辑正常,另一方面可以迅速得到故障信息。为使错误处理的代码不影响主程序的可读性,我们把与socket相关的一些系统函数加上错误处理代码包装成新的函数,做成一个模块wrap.c:

#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
void perr_exit(const char *s)
{
perror(s);
exit(1);
} int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{
int n;
again:
if ( (n = accept(fd, sa, salenptr)) < 0) {
if ((errno == ECONNABORTED) || (errno == EINTR))
goto again;
else
perr_exit("accept error");
}
return n;
} void Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (bind(fd, sa, salen) < 0)
perr_exit("bind error");
} void Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (connect(fd, sa, salen) < 0)
perr_exit("connect error");
} void Listen(int fd, int backlog)
{
if (listen(fd, backlog) < 0)
perr_exit("listen error");
} int Socket(int family, int type, int protocol)
{
int n;
if ( (n = socket(family, type, protocol)) < 0)
perr_exit("socket error");
return n;
} ssize_t Read(int fd, void *ptr, size_t nbytes)
{
ssize_t n;
again:
if ( (n = read(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
} ssize_t Write(int fd, const void *ptr, size_t nbytes)
{
ssize_t n;
again:
if ( (n = write(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
} void Close(int fd)
{
if (close(fd) == -1)
perr_exit("close error");
} ssize_t Readn(int fd, void *vptr, size_t n)//指定读够n个字节返回
{
size_t nleft;
ssize_t nread;
char *ptr; ptr = vptr;
nleft = n;
while (nleft > 0) {
if ( (nread = read(fd, ptr, nleft)) < 0) {
if (errno == EINTR)
nread = 0;
else
return -1;
} else if (nread == 0)
break; nleft -= nread;
ptr += nread; }
return n - nleft;
} ssize_t Writen(int fd, const void *vptr, size_t n)
{
size_t nleft;
ssize_t nwritten;
const char *ptr; ptr = vptr;
nleft = n;
while (nleft > 0) {
if ( (nwritten = write(fd, ptr, nleft)) <= 0) {
if (nwritten < 0 && errno == EINTR)
nwritten = 0;
else
return -1;
}
nleft -= nwritten;
ptr += nwritten;
}
return n;
} static ssize_t my_read(int fd, char *ptr)
{
static int read_cnt;
static char *read_ptr;
static char read_buf[100]; if (read_cnt <= 0) {
again:
if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
if (errno == EINTR)
goto again;
return -1;
}
else if (read_cnt == 0)
return 0;
read_ptr = read_buf;
}
read_cnt--;
*ptr = *read_ptr++;
return 1;
} ssize_t Readline(int fd, void *vptr, size_t maxlen)//一次读一行
{
ssize_t n, rc;
char c, *ptr; ptr = vptr;
for (n = 1; n < maxlen; n++) {
if ( (rc = my_read(fd, &c)) == 1) {
*ptr++ = c;
if (c == '\n')
break;
} else if (rc == 0) {
*ptr = 0;
return n - 1;
} else
return -1;
}
*ptr = 0;
return n;
}
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
void perr_exit(const char *s)
{
perror(s);
exit(1);
} int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{
int n;
again:
if ( (n = accept(fd, sa, salenptr)) < 0) {
if ((errno == ECONNABORTED) || (errno == EINTR))
goto again;
else
perr_exit("accept error");
}
return n;
} void Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (bind(fd, sa, salen) < 0)
perr_exit("bind error");
} void Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (connect(fd, sa, salen) < 0)
perr_exit("connect error");
} void Listen(int fd, int backlog)
{
if (listen(fd, backlog) < 0)
perr_exit("listen error");
} int Socket(int family, int type, int protocol)
{
int n;
if ( (n = socket(family, type, protocol)) < 0)
perr_exit("socket error");
return n;
} ssize_t Read(int fd, void *ptr, size_t nbytes)
{
ssize_t n;
again:
if ( (n = read(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
} ssize_t Write(int fd, const void *ptr, size_t nbytes)
{
ssize_t n;
again:
if ( (n = write(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
} void Close(int fd)
{
if (close(fd) == -1)
perr_exit("close error");
} ssize_t Readn(int fd, void *vptr, size_t n)//指定读够n个字节返回
{
size_t nleft;
ssize_t nread;
char *ptr; ptr = vptr;
nleft = n;
while (nleft > 0) {
if ( (nread = read(fd, ptr, nleft)) < 0) {
if (errno == EINTR)
nread = 0;
else
return -1;
} else if (nread == 0)
break; nleft -= nread;
ptr += nread; }
return n - nleft;
} ssize_t Writen(int fd, const void *vptr, size_t n)
{
size_t nleft;
ssize_t nwritten;
const char *ptr; ptr = vptr;
nleft = n;
while (nleft > 0) {
if ( (nwritten = write(fd, ptr, nleft)) <= 0) {
if (nwritten < 0 && errno == EINTR)
nwritten = 0;
else
return -1;
}
nleft -= nwritten;
ptr += nwritten;
}
return n;
} static ssize_t my_read(int fd, char *ptr)
{
static int read_cnt;
static char *read_ptr;
static char read_buf[100]; if (read_cnt <= 0) {
again:
if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
if (errno == EINTR)
goto again;
return -1;
}
else if (read_cnt == 0)
return 0;
read_ptr = read_buf;
}
read_cnt--;
*ptr = *read_ptr++;
return 1;
} ssize_t Readline(int fd, void *vptr, size_t maxlen)//一次读一行
{
ssize_t n, rc;
char c, *ptr; ptr = vptr;
for (n = 1; n < maxlen; n++) {
if ( (rc = my_read(fd, &c)) == 1) {
*ptr++ = c;
if (c == '\n')
break;
} else if (rc == 0) {
*ptr = 0;
return n - 1;
} else
return -1;
}
*ptr = 0;
return n;
}
/* wrap.h */
#ifndef __WRAP_H_
#define __WRAP_H_ void perr_exit(const char *s);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
void Bind(int fd, const struct sockaddr *sa, socklen_t salen);
void Connect(int fd, const struct sockaddr *sa, socklen_t salen);
void Listen(int fd, int backlog);
int Socket(int family, int type, int protocol);
ssize_t Read(int fd, void *ptr, size_t nbytes);
ssize_t Write(int fd, const void *ptr, size_t nbytes);
void Close(int fd);
ssize_t Readn(int fd, void *vptr, size_t n);
ssize_t Writen(int fd, const void *vptr, size_t n);
static ssize_t my_read(int fd, char *ptr);
ssize_t Readline(int fd, void *vptr, size_t maxlen); #endif
/* wrap.h */
#ifndef __WRAP_H_
#define __WRAP_H_ void perr_exit(const char *s);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
void Bind(int fd, const struct sockaddr *sa, socklen_t salen);
void Connect(int fd, const struct sockaddr *sa, socklen_t salen);
void Listen(int fd, int backlog);
int Socket(int family, int type, int protocol);
ssize_t Read(int fd, void *ptr, size_t nbytes);
ssize_t Write(int fd, const void *ptr, size_t nbytes);
void Close(int fd);
ssize_t Readn(int fd, void *vptr, size_t n);
ssize_t Writen(int fd, const void *vptr, size_t n);
static ssize_t my_read(int fd, char *ptr);
ssize_t Readline(int fd, void *vptr, size_t maxlen); #endif

Linux学习之socket编程(二)的更多相关文章

  1. Linux学习之socket编程(一)

    socket编程 socket的概念: 在TCP/IP协议中,“IP地址+TCP或UDP端口号”唯一标识网络通讯中的一个进程,“IP地址+端口号”就称为socket. 在TCP协议中,建立连接的两个进 ...

  2. Linux学习总结(十二)—— CentOS用户管理:创建用户、修改用户、修改密码、密码有效期、禁用账户、解锁账户、删除用户、查看所有用户信息

    文章首发于Linux学习总结(十二)-- CentOS用户管理,请尊重原创保留原文链接. 创建用户 useradd -g webadmin -d /home/zhangsan zhangsan pas ...

  3. linux网络编程之socket编程(二)

    今天继续对socket编程进行研究,这里会真正开如用socket写一个小例子,进入正题: TCP客户/服务器模型:   关于这个模型的流程这里就不多说了,比较容易理解,下面则利用这种模型来编写一个实际 ...

  4. Linux下网络socket编程——实现服务器(select)与多个客户端通信

    一.关于socket通信 服务器端工作流程: 调用 socket() 函数创建套接字 用 bind() 函数将创建的套接字与服务端IP地址绑定 调用listen()函数监听socket() 函数创建的 ...

  5. Linux下Golang Socket编程原理分析与代码实现

    在POSIX标准推出后,socket在各大主流OS平台上都得到了很好的支持.而Golang是自带Runtime的跨平台编程语言,Go中提供给开发者的Socket API是建立在操作系统原生Socket ...

  6. Linux 应用开发----socket编程笔记

    Linux socket编程 套接字定义描述 套接字的域 AF_INET ====>IPv4 AF_INET6 ====>IPv6 AF_UNIX ====>unix 域 AF_UP ...

  7. Linux学习之日志管理(二十一)

    Linux学习之日志管理 目录 日志管理 日志服务 rsyslogd的新特点 启动日志服务 常见日志的作用 日志文件的一般格式 rsyslogd日志服务 /etc/rsyslog.conf配置文件 服 ...

  8. Linux学习 : Socket 网络编程入门

    一.socket()函数 int socket(int domain, int type, int protocol); domain:即协议域,又称为协议族(family).常用的协议族有,AF_I ...

  9. 网络编程学习笔记:linux下的socket编程

    socket是进程通信的一种方式,通过调用一些API可以实现进程间通信,建立连接以及收发信息的过程如下图所示: 这些函数的用法如下: 1.int socket(int protocolFamily, ...

随机推荐

  1. 准备把平台挪到linux

    在上午准备周末胡老师的课程考核的Ppt时,逐渐我觉得不得不把平台挪到linux了.很多并行的应用不只是在linux上效率更高,而且很多包都在linux上.另外如果不及早挪到Linux上,后面遇到的问题 ...

  2. POJ 1182 食物链 (并查集解法)(详细注释)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78510   Accepted: 23396 Description ...

  3. php面向对象的基础:OOP的常量

    常量(constant) 用来表示不会改变的值.对于从该类实例化的任何对象来说,常量值在这些对象的整个生命周期中都保持不变. class Computer{ const PI=3.1415926; } ...

  4. shell基础编程

    首先要注意的是,Ubuntu里的shell的sh和bash命令是有区别的 如下所示,Ubuntu下的sh指向的dash程序,而bash是dash的增强版,一些bash上能执行的程序在dash上不行 如 ...

  5. 路飞学城-Python开发-第三章

    # 数据结构: # goods = [ # {"name": "电脑", "price": 1999}, # {"name&quo ...

  6. MySQL的concat以及group_concat的用法

    一.concat()函数 1.功能:将多个字符串连接成一个字符串. 2.语法:concat(str1, str2,...) 返回结果为连接参数产生的字符串,如果有任何一个参数为null,则返回值为nu ...

  7. CodeForces-1007A Reorder the Array 贪心 田忌赛马

    题目链接:https://cn.vjudge.net/problem/CodeForces-1007A 题意 给个数组,元素的位置可以任意调换 问调换后的元素比此位置上的原元素大的元素个数最大多少 思 ...

  8. 51nod 1325 两棵树的问题(最大权闭合子图)

    首先如果点权全都为正,就可以直接选所有的点. 活在梦里.. 考虑枚举一个点\(i\),作为我们选择的集合中的一个点. 然后我们把另一个点\(j\)选入集合的时候必须把两棵树中\(i\)和\(j\)路径 ...

  9. centos7 jumpserver 部署和使用手册(二)

    前面已经介绍了jumpserver的部署,基于这篇部署文档,下面介绍下部署完成后的的功能使用: 一.系统设置 1.1根据提供的帐号密码(admin/admin)登录jumpserver 修改 url ...

  10. linux 下的小知识

    Linux中有7种启动级别 运行级别0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启动运行级别1:单用户工作状态,root权限,用于系统维护,禁止远程登陆运行级别2:多用户状态(没有NFS ...