[bzoj4765]普通计算姬(分块+树状数组+DFS序)
题意
给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权值和。
计算姬支持下列两种操作: 1 给定两个整数u,v,修改点u的权值为v。 2 给定两个整数l,r,计算sum[l]+sum[l+1]+….+sum[r-1]+sum[r] 
N<=10^5,M<=10^5
题解
每一个块中统计sum[i]的和,这个直接求出DFS序维护树状数组nlogn统计就行。
然后询问时对于一个整块直接加上我们统计的sum[i]的和,然后对于边角余料,我们用树状数组求就行。
修改时我们要维护树状数组直接位置上加(x-v[i])就行。
然后我们要维护块的和,就需要把和加上块中i的祖先数(包含i)*(x-v[i])。
所以我们预处理出f[i][j]代表第i块中j(包括j)的祖先数。这个dfs中用一个数组记录祖先情况(进入时加上自己,推出时减掉自己),对于每个点扫一遍每个块统计就行。
然后这题要用unsigned long long 然后也不能全开,会MLE
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int cnt,head[N];
int size[N],id[N],tot;
int num[],block[N],f[][N];
unsigned long long sum[],a[N],tr[N],ans,v[N];
int n,m,R[],L[],Block,root;
struct edge{
int to,nxt;
}e[N*];
void add(int u,int v){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
head[u]=cnt;
}
void dfs1(int u,int fa){
size[u]=;
id[u]=++tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==fa)continue;
dfs1(v,u);
size[u]+=size[v];
}
}
void dfs2(int u,int fa){
num[block[u]]++;
for(int i=;i<=block[n];i++){
f[i][u]+=num[i];
}
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==fa)continue;
dfs2(v,u);
}
num[block[u]]--;
}
int lowbit(int x){
return x&-x;
}
void update(int x,unsigned long long w){
for(int i=x;i<=n;i+=lowbit(i)){
tr[i]+=w;
}
}
unsigned long long query(int x){
unsigned long long tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr[i];
}
return tmp;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%llu",&v[i]);
}
for(int i=;i<=n;i++){
int u,v;
scanf("%d%d",&u,&v);
if(u==){
root=v;
continue;
}
add(u,v);
add(v,u);
}
dfs1(root,);
for(int i=;i<=n;i++){
update(id[i],v[i]);
}
for(int i=;i<=n;i++){
a[i]=query(id[i]+size[i]-)-query(id[i]-);
// cout<<i<<" "<<id[i]<<" "<<size[i]<<" "<<a[i]<<endl;
}
Block=sqrt(n);
for(int i=;i<=n;i++){
block[i]=(i-)/Block+;
sum[block[i]]+=a[i];
if(!L[block[i]])L[block[i]]=i;
R[block[i]]=i;
}
dfs2(root,);
while(m--){
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
if(k==){
for(int i=;i<=block[n];i++){
sum[i]+=f[i][x]*(y-v[x]);
}
update(id[x],y-v[x]);
v[x]=y;
}
else{
ans=;
if(block[x]+>=block[y]){
for(int i=x;i<=y;i++){
ans+=query(id[i]+size[i]-)-query(id[i]-);
}
}
else{
for(int i=block[x]+;i<=block[y]-;i++){
ans+=sum[i];
}
for(int i=x;i<=R[block[x]];i++){
ans+=query(id[i]+size[i]-)-query(id[i]-);
}
for(int i=L[block[y]];i<=y;i++){
ans+=query(id[i]+size[i]-)-query(id[i]-);
}
}
printf("%llu\n",ans);
}
}
return ;
}
[bzoj4765]普通计算姬(分块+树状数组+DFS序)的更多相关文章
- BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]
		传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原 ... 
- [BZOJ4765]普通计算姬(分块+树状数组)
		4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1725 Solved: 376[Submit][Status][Discus ... 
- BZOJ 4765: 普通计算姬 (分块+树状数组)
		传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是 ... 
- 【BZOJ】2434: [Noi2011]阿狸的打字机 AC自动机+树状数组+DFS序
		[题意]阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小写 ... 
- bzoj 4765 普通计算姬(树状数组 + 分块)
		http://www.lydsy.com/JudgeOnline/problem.php?id=4765 很nice的一道题啊(可能是因为卡了n久终于做出来了 题意就是给你一棵带点权的有根树,sum( ... 
- 【BZOJ-1103】大都市meg       树状数组 + DFS序
		1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2009 Solved: 1056[Submit][Sta ... 
- [luogu P3787][新创无际夏日公开赛] 冰精冻西瓜 [树状数组][dfs序]
		题目背景 盛夏,冰之妖精琪露诺发现了一大片西瓜地,终于可以吃到美味的冻西瓜啦. 题目描述 琪露诺是拥有操纵冷气程度的能力的妖精,一天她发现了一片西瓜地.这里有n个西瓜,由n-1条西瓜蔓连接,形成一个有 ... 
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
		Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ... 
- 【BZOJ3653】谈笑风生 离线+树状数组+DFS序
		[BZOJ3653]谈笑风生 Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道高明到哪里去了”. ? 设a 和 ... 
随机推荐
- Elasticsearch之重要核心概念(cluster(集群)、shards(分配)、replicas(索引副本)、recovery(据恢复或叫数据重新分布)、gateway(es索引的持久化存储方式)、discovery.zen(es的自动发现节点机制机制)、Transport(内部节点或集群与客户端的交互方式)、settings(修改索引库默认配置)和mappings)
			Elasticsearch之重要核心概念如下: 1.cluster 代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的.es的一个概念就是 ... 
- App.config:配置系统未能初始化的异常
			如上图所示:App.config文件是这样配置的,在后台代码”ISchedulerFactory scheduler = new StdSchedulerFactory();“中抛出了异常 经网上查资 ... 
- Windows 10 Mobile 演示:插入耳机自动执行 APP
			Windows Mobile 10 新特性:插入外部设备自动动作(如插入耳机执行 APP.打开小工具):另外可以找到最后一次使用设备地点和时间: http://www.tudou.com/progra ... 
- js判断数据类型方法
			//一般js中我们判断数据类型 都使用typeof 这里采用 Object.prototype.toString function type (val) { return Object.prototy ... 
- mybatis批量插入、批量更新和批量删除
			转载 https://www.jianshu.com/p/041bec8ae6d3 
- STM8S103 STVD编译空间不足
			关于text空间(理解为代码空间)不足问题 # 关于.bsct和.ubsct问题(着重参考http://www.waveshare.net/article/STM8-3-1-10.htm) map文件 ... 
- 创建一个 Django 项目
			一. 创建项目 其中: 确认项目是否创建成功: 在 manage.py 目录上运行 python manage.py runserver server 启动后,在浏览器访问 http://127.0. ... 
- 洛谷P3254 圆桌问题 网络流_二分图
			Code: #include<cstdio> #include<algorithm> #include<vector> #include<queue> ... 
- python一些被我忽略的知识
			最后一个不小心打错了,刚看到,try ...else 与 while/for else的相同 
- BZOJ 2865 字符串识别(后缀数组+线段树)
			很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\ ... 
