点云场景中进行物体识别,使用全局特征的方法严重依赖于点云分割,难以适应杂乱场景。使用局部特征,即对点云进行提取类似于3D SURF、ROPS之类的局部特征,需要寻找离散点云块的局部显著性。

点云的基本局部显著性有某一点处的曲率。

一、几何尺寸

可表述为显著性曲率的曲率阈值与物体的几何大小有关。

                

典型三维模型Dragon和ball两个物体,ball也可以进行三维剖分,但其三维剖分没有任何几何意义,而deagon的三维剖分有特异性。

二、无规则三角化

参考PCL官方网站链接:Fast triangulation of unordered point clouds

代码:

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/gp3.h> int
main (int argc, char** argv)
{
// Load input file into a PointCloud<T> with an appropriate type
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCLPointCloud2 cloud_blob;
pcl::io::loadPCDFile ("bun0.pcd", cloud_blob);
pcl::fromPCLPointCloud2 (cloud_blob, *cloud);
//* the data should be available in cloud // Normal estimation*
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud (cloud);
n.setInputCloud (cloud);
n.setSearchMethod (tree);
n.setKSearch (20);
n.compute (*normals);
//* normals should not contain the point normals + surface curvatures // Concatenate the XYZ and normal fields*
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
//* cloud_with_normals = cloud + normals // Create search tree*
pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
tree2->setInputCloud (cloud_with_normals); // Initialize objects
pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3;
pcl::PolygonMesh triangles; // Set the maximum distance between connected points (maximum edge length)
gp3.setSearchRadius (0.025); // Set typical values for the parameters
gp3.setMu (2.5);
gp3.setMaximumNearestNeighbors (100);
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp3.setMinimumAngle(M_PI/18); // 10 degrees
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
gp3.setNormalConsistency(false); // Get result
gp3.setInputCloud (cloud_with_normals);
gp3.setSearchMethod (tree2);
gp3.reconstruct (triangles); // Additional vertex information
std::vector<int> parts = gp3.getPartIDs();
std::vector<int> states = gp3.getPointStates(); // Finish
return (0);
}

图形效果:

PCL: 根据几何规则的曲面剖分-贪婪法表面重建三角网格的更多相关文章

  1. 【ACM小白成长撸】--贪婪法解硬币找零问题

    question:假设有一种货币,它有面值为1分.2分.5分和1角的硬币,最少需要多少个硬币来找出K分钱的零钱.按照贪婪法的思想,需要不断地使用面值最大的硬币.如果找零的值小于最大的硬币值,则尝试第二 ...

  2. Java实现猜底牌问题(贪婪法)

    1 问题描述 设计一种策略,使在下面的游戏中,期望提问的次数达到最小.有一副纸牌,是由1张A,2张2,3张3,-9张9组成的,一共包含45张牌.有人从这副牌洗过的牌中抽出一张牌,问一连串可以回答是或否 ...

  3. 基于面绘制的MC算法以及基于体绘制的 Ray-casting 实现Dicom图像的三维重建(python实现)

    加入实验室后,经过张老师的介绍,有幸与某公司合共共同完成某个项目,在此项目中我主要负责的是三维 pdf 报告生成.Dicom图像上亮度.对比度调整以及 Dicom图像三维重建.今天主要介绍一下完成Di ...

  4. VR论文调研

    IEEE VR 2018 1.Avatars and Virtual Humans--人物和虚拟人物 2.Augmented Reality--增强现实 3.Body and Mind--人体和思想( ...

  5. 图像数据到网格数据-1——MarchingCubes算法

    原文:http://blog.csdn.net/u013339596/article/details/19167907 概述 之前的博文已经完整的介绍了三维图像数据和三角形网格数据.在实际应用中,利用 ...

  6. 图像数据到网格数据-1——Marching Cubes算法的一种实现

    概述 之前的博文已经完整的介绍了三维图像数据和三角形网格数据.在实际应用中,利用遥感硬件或者各种探测仪器,可以获得表征现实世界中物体的三维图像.比如利用CT机扫描人体得到人体断层扫描图像,就是一个表征 ...

  7. PCL贪婪投影三角化算法

    贪婪投影三角化算法是一种对原始点云进行快速三角化的算法,该算法假设曲面光滑,点云密度变化均匀,不能在三角化的同时对曲面进行平滑和孔洞修复. 方法: (1)将三维点通过法线投影到某一平面 (2)对投影得 ...

  8. pcl曲面网格模型的三种显示方式

    pcl网格模型有三种可选的显示模式,分别是面片模式(surface)显示,线框图模式(wireframe)显示,点模式(point)显示.默认为面片模式进行显示.设置函数分别为: void pcl:: ...

  9. pcl曲面重建模块-贪婪三角形投影算法实例

    贪婪三角形投影算法 在pcl-1.8测试 #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include &l ...

随机推荐

  1. 费用最少的一款赛门铁克SSL证书

    Symantec Secure Site SSL证书,验证域名所有权和企业信息,属于Symantec Class 3企业(OV)验证 级SSL证书,为40位/56位/128/256位自适应加密,目前连 ...

  2. HDU 5442 Favorite Donut

    Favorite Donut Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  3. ESdata节点脱离集群,系统日志报120秒超时

    ES信息:Centos7.2,ES6.2.2 , MASTER:16核/128G物理 * 3 ,DATA:16核/128G/12块HDD6T组成RAID0 * 40, JVM开了30G,  目前只有一 ...

  4. CODEVS2144 砝码称重2 (哈希表)

    由于m很大,所以不能使用DP. 注意到n≤30,直接暴力2^n会TLE. 所以,将砝码平均分成两份,对一份进行一次暴力,用哈希表存下可能的结果. 对下一份再进行一次暴力,在哈希表中搜索剩余的砝码重量是 ...

  5. [bzoj4010][HNOI2015]菜肴制作_贪心_拓扑排序

    菜肴制作 bzoj-4010 HNOI-2015 题目大意:给定一张n个点m条边的有向图,求一个toposort,使得:(1)满足编号为1的点尽量在前:(2)满足(1)的情况下编号为2的点尽量在前,以 ...

  6. 泛型和面向对象C++

    1. 在类内部定义的函数默觉得inline,内联函数应该在头文件里定义,由于其定义对编译器必须是可见的,以便编译器可以在调用点内联展开该函数的代码. 此时,仅有函数原型是不够的. 2.assert 3 ...

  7. @Transaction 无效

    上班的时候碰到这个问题,看了一些博客写的,都试了一遍解决方案,发现结果还是不行, 最后突然发现我的配置顺序和网上的有些许不同,就改了下,发现成功了,特此打桩纪念一下. 一.先说一下基本用法: 1. @ ...

  8. [BZOJ 1741] Asteroids

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1741 [算法] 将每颗小行星的行,列相连,问题就转化为了求这张图的最小覆盖 由kon ...

  9. iOS中的数据库—使用FMDB

    一.回顾 iOS中的数据存储方式 1.XML属性列表(plist) 写入OC的一些基本数据类型,不是所有对象都可以写入 2.Preference(偏好设置) 本质还是通过“plist”来存储数据,但是 ...

  10. 第14课 SourceTree程序操作介绍

    http://www.atlassian.com/software/sourcetree/overview https://www.microsoft.com/net/framework/versio ...