感觉 好博客要收集,还是贴在自己空间里难忘!!!

原文链接:http://blog.csdn.net/hitwengqi/article/details/7907366

http://people.cs.uchicago.edu/~niyogi/

http://www.cs.uchicago.edu/people/

http://pages.cs.wisc.edu/~jerryzhu/

http://www.kyb.tuebingen.mpg.de/~chapelle

http://people.cs.uchicago.edu/~xiaofei/

http://www.cs.uiuc.edu/homes/dengcai2/

http://www.kyb.mpg.de/~bs

http://research.microsoft.com/~denzho/

http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item5    (resources for the
book of the introduction of data mining by Pang-ning Tan et.al. )(国内已经有相应的中文版)

http://www.cs.toronto.edu/~roweis/lle/publications.html    (lle算法源代码及其相关论文)

http://dataclustering.cse.msu.edu/index.html#software(data clustering)

http://www.cs.toronto.edu/~roweis/     (里面有好多资源)

http://www.cse.msu.edu/~lawhiu/  (manifold learning)

http://www.math.umn.edu/~wittman/mani/ (manifold learning demo in matlab)

http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/INDEX.HTM  (manifold
learning in matlab)

http://videolectures.net/mlss05us_belkin_sslmm/   (semi supervised learning with manifold method
by Belkin)

http://isomap.stanford.edu/    (isomap主页)

http://web.mit.edu/cocosci/josh.html  MIT    TENENBAUM J B主页

http://web.engr.oregonstate.edu/~tgd/    (国际著名的人工智能专家 Thomas G. Dietterich)

http://www.cs.berkeley.edu/~jordan/ (MIchael I.Jordan)

http://www.cs.cmu.edu/~awm/  (Andrew W. Moore's  homepage)

http://learning.cs.toronto.edu/ (加拿大多伦多大学机器学习小组)

http://www.cs.cmu.edu/~tom/ (Tom Mitchell,里面有与教材匹配的slide。)

一些牛人索引:

Kernel Methods:核方法到底有何好处呢????

Alexander J. Smola

Maximum Mean Discrepancy (MMD), Hilbert-Schmidt Independence Criterion (HSIC)

Bernhard Sch?lkopf

Kernel PCA

James T Kwok

Pre-Image, Kernel Learning, Core Vector Machine(CVM)

Jieping Ye

Kernel Learning, Linear Discriminate Analysis, Dimension Deduction

Multi-Task Learning

Andreas Argyriou

Multi-Task Feature Learning

Charles A. Micchelli

Multi-Task Feature Learning, Multi-Task Kernel Learning

Massimiliano Pontil

Multi-Task Feature Learning

Yiming Ying

Multi-Task Feature Learning, Multi-Task Kernel Learning

Semi-supervised Learning:半监督学习...


Partha Niyogi

Manifold Regularization, Laplacian Eigenmaps

Mikhail Belkin

Manifold Regularization, Laplacian Eigenmaps

Vikas Sindhwani

Manifold Regularization

Xiaojin Zhu

Graph-based Semi-supervised Learning

Multiple Instance Learning

Sally A Goldman

EM-DD, DD-SVM, Multiple Instance Semi Supervised Learning(MISS)

Dimensionality Reduction


Neil Lawrence

Gaussian Process Latent Variable Models (GPLVM)

Lawrence K. Saul

Maximum Variance Unfolding(MVU), Semidefinite Embedding(SDE)

Machine Learning

Michael I. Jordan

Graphical Models

John Lafferty

Diffusion Kernels, Graphical Models

Daphne Koller

Logic, Probability

Zhang Tong

Theoretical Analysis of Statistical Algorithms, Multi-task Learning, Graph-based Semi-supervised Learning

Zoubin Ghahramani

Bayesian approaches to machine learning

Machine Learning @ Toronto

Statitiscal Machine Learning & Optimization

Jerome H Friedman

GLasso, Statistical view of AdaBoost, Greedy Function Approximation

Thevor Hastie

Lasso

Stephen Boyd

Convex Optimization

C.J Lin

Libsvm

http://www.dice.ucl.ac.be/mlg/

半监督流形学习(流形正则化)

http://manifold.cs.uchicago.edu/

模式识别和神经网络工具箱

http://www.ncrg.aston.ac.uk/netlab/index.php

机器学习开源代码

http://mloss.org/software/tags/large-scale-learning/

统计学开源代码

http://www.wessa.net/

matlab各种工具箱链接

http://www.tech.plym.ac.uk/spmc/links/matlab/matlab_toolbox.html

统计学学习经典在线教材

http://www.statistics4u.info/

机器学习开源源代码

http://mloss.org/software/language/matlab/

国外AI界牛人主页 及资源链接的更多相关文章

  1. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  2. 关于国内外CV领域牛人的博客链接 .

    此文为转载文章,尊重知识产权http://blog.csdn.net/carson2005/article/details/6601109此为原文链接,感谢作者! 以下链接是关于计算机视觉(Compu ...

  3. 《2017全球人工智能人才白皮书》发布丨解读世界顶级AI牛人的秘密——腾讯研究院

    <2017全球人工智能人才白皮书>发布丨解读世界顶级AI牛人的秘密——腾讯研究院:下载链接:http://www.tisi.org/c16 这个报告写的很好,排版布局,表格,色调,内容都值 ...

  4. paper 61:计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接

    转载出处:blog.csdn.net/carson2005 以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV ...

  5. CV牛人牛事简介之一

    CV牛人牛事简介之一 [论坛按] 发帖人转载自:http://doctorimage.cn/2013/01/01/cv-intro-niubility/#6481970-qzone-1-83120-8 ...

  6. 转:Java开发牛人十大必备网站

    原文来自于:http://www.importnew.com/7980.html 以下是我收集的Java开发牛人必备的网站.这些网站可以提供信息,以及一些很棒的讲座, 还能解答一般问题.面试问题等.质 ...

  7. 一位IT牛人的十年经验之谈

    1.分享第一条经验:“学历代表过去.能力代表现在.学习力代表未来.” 其实这是一个来自国外教育领域的一个研究结果.相信工作过几年.十几年的朋友对这个道理有些体会吧.但我相信这一点也很重要:“重要的道理 ...

  8. 20年硅谷技术牛人到访DataPipeline谈:技术如何与业务平衡发展

    导读:技术人员的常态是“左手支持业务签单,右手提升系统性能”,却经常陷入技术和业务该如何平衡发展的困惑?今天,且听一位硅谷牛人分享他的平衡之道. 以个人名誉申请31个国内外技术和产品专利,中国最佳CT ...

  9. Java开发牛人十大必备网站

    以下是我收集的Java开发牛人必备的网站.这些网站可以提供信息,以及一些很棒的讲座, 还能解答一般问题.面试问题等.质量是衡量一个网站的关键因素,我个人认为这些网站质量都很好.接下来,我会跟大家分享我 ...

随机推荐

  1. Tensorflow读取csv文件(转)

    常用的直接读取方法实例:#加载包 import tensorflow as tf import os #设置工作目录 os.chdir("你自己的目录") #查看目录 print( ...

  2. Codeforces Round #417 (Div. 2)——ABCE

    题目链接 题面有点长需耐心读题. A.一个人行道上的人被撞有4种情况 1.所在车道有车驶出 2.右边车道有左转车 3.左边车道有右转车 4.对面车道有直行车 #include <bits/std ...

  3. The merchant

    The merchant Time Limit: 3000MS   Memory Limit: 65536K       Description There are N cities in a cou ...

  4. Drop all tables in MySQL database

    Drop all tables in MySQL database Answer: MySQL does not have a command for removing all database ta ...

  5. log4net的相关使用笔记

    1, XmlConfigurator 创建添加一个Tracer project,引用nuget上最新的log4net 在Tracer里新增一个AppLog类: public static class ...

  6. Sencha Toucha 2.1 文件上传

    javascript代码: Ext.onReady(function() { Ext.create('Ext.form.Panel', { title: 'Upload a Photo', width ...

  7. Grails里的集成测试代码试例

    测试的命令,3和2不一样了,要找找.. User.groovy package com.grailsinaction class User { String loginId String passwo ...

  8. Oracle-统计数据库表数据总数量

    create or replace procedure prc_table_count(p_flag out varchar2) AS TCOUNT number; SCOUNT number; CO ...

  9. [转]C#——细说事务

    转自:风尘浪子 - 博客园 引言 其实事务在数据层.服务层.业务逻辑层多处地方都会使用到,在本篇文章将会为大家一一细说. 其中前面四节是事务的基础,后面的三节是事务的重点,对事务有基础的朋友可以跳过前 ...

  10. Clojure:通过ZeroMQ推送消息

    通过ZeroMQ的pub/sub模式,我们可以实现发送推送消息的功能.以下为示例代码(入门可参考此文:http://www.cnblogs.com/ilovewindy/p/3984269.html) ...