线性回归(linear regression)实践篇

之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了。

这次打算以该课程的作业为主线,对机器学习基本知识做一下总结。小弟才学疏浅,如有错误。敬请指导。

问题原描写叙述:

you will implement linear regression with one
variable to predict prots for a food truck. Suppose you are the CEO of a
restaurant franchise and are considering dierent cities for opening a new
outlet. The chain already has trucks in various cities and you have data for
prots and populations from the cities.

简单来说,就是依据一个城市的人口数量,来预測一辆快餐车能获得的利益。

数据集大概是这样子的:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

一行数据为一个样本。第一列表示人口,第二列表示利益。

首先。先把数据可视化。

%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); figure; % open a new figure window plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
ylabel('Profit in $10,000s'); % Set the y label
xlabel('Population of City in 10,000s'); % Set the x label % ============================================================ end

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

计算cost function

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
H = X*theta;
diff = H - y;
%J = sum(diff.^2)/(2*m);
J = sum(diff.*diff)/(2*m); % ========================================================================= end

为了方便理解上面代码,看看各变量大概长什么样子的。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

梯度下降法计算參数theta

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% H = X*theta-y;
theta(1) = theta(1) - sum(H.* X(:,1))*alpha/m;%感觉这样写挺搓的
theta(2) = theta(2) - sum(H.* X(:,2))*alpha/m;
%theta = theta - alpha * (X' * (X * theta - y)) / m; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end

难以理解的是theta = theta - alpha * (X' * (X * theta - y)) / m; 这样的向量化算法。

先看看theta本质是怎么计算的

再看看各变量长什么样子的

算出theta之后,就能够画出拟合直线了。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

注:本文作者linger,如有转载。请标明转载于http://blog.csdn.net/lingerlanlan。

本文链接:http://blog.csdn.net/lingerlanlan/article/details/32162559

从零单排入门机器学习:线性回归(linear regression)实践篇的更多相关文章

  1. 从零单排入门机器学习:Octave/matlab的经常使用知识之矩阵和向量

    Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一 ...

  2. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  4. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  5. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  6. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

随机推荐

  1. NOIP 2012 D1T1 Vigenère密码

    嗯嗯 一道找规律的题.... 真佩服那些把表打出来的人 //By SiriusRen #include <cstdio> #include <cstring> using na ...

  2. guice基本使用,常用的绑定方式(四)

    guice在moudle中提供了良好的绑定方法. 它提供了普通的绑定,自定义注解绑定,按名称绑定等. 下面直接看代码: package com.ming.user.test; import com.g ...

  3. 同一sql程序执行比数据库执行慢

    最近项目发现同一个sql在java端执行比在数据库执行慢很多,原因可能是程序的sql参数类型与数据库字段的类型不一致.

  4. JavaScript中的工厂方法、构造函数与class

    JavaScript中的工厂方法.构造函数与class 本文转载自:众成翻译 译者:谢于中 链接:http://www.zcfy.cc/article/1129 原文:https://medium.c ...

  5. innerHTML的用法

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  6. App Store兼容性问题

    app下载出现兼容性问题  项目支持9.0以上的系统 但是10.3的iphone5下载的一直是老版本app  下载时提示不兼容 导致无法正常使用 解决办法: 修改Build-Settings-> ...

  7. MySQL 5.6 Reference Manual-14.6 InnoDB Table Management

    14.6 InnoDB Table Management 14.6.1 Creating InnoDB Tables 14.6.2 Moving or Copying InnoDB Tables to ...

  8. SQLServer之merge函数用法

    MERGE 目标表 USING 源表 ON 匹配条件 WHEN MATCHED THEN 语句 WHEN NOT MATCHED THEN 语句; 其中最后语句分号不可以省略,且源表既可以是一个表也可 ...

  9. [Intermediate Algorithm] - Smallest Common Multiple

    题目 找出能被两个给定参数和它们之间的连续数字整除的最小公倍数. 范围是两个数字构成的数组,两个数字不一定按数字顺序排序. 例如对 1 和 3 —— 找出能被 1 和 3 和它们之间所有数字整除的最小 ...

  10. C#——面对对象之封装、继承、多态的简单理解

    一.封装 隐藏对象的属性和实现细节,仅对外公开接口,控制在程序中属性的读取和修改的访问级别. 简单来多,就是讲我们所需要的代码打包封装进入一个类里面,便于我们调用,操作.这就是封装. 这样就隔离了具体 ...