链接

小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点.

第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边.

小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间 的距离定义为从一个点走到另一个点的路径经过的边数.

现在他非常好奇, 如果 \(N\) 天之后小 G 来他家摘苹果, 这个不便度的期望 \(E\) 是多少. 但是小 C 讨厌分数, 所以他只想知道 \(E \times N!\)对 \(P\) 取模的结果, 可以证明这是一个整数.

题解

新建一个节点之后,会减少一个空位,增加2个空位,因此空位数加1

所以节点数为 \(n\) 的树的方案数为 \(1\times 2\times \dots \times n=n!\)

那个所有点的距离之和,考虑每个点和它父亲之间的边的贡献,设 \(siz\) 为它的子树大小。

答案为 \(siz\times (n-siz)\)

考虑枚举点 \(i\) 和 \(siz\) ,下面问题转化为求合法的树的方案数。

首先构造出 \(i\) 个点的树,方案数为 \(i!\)

然后把 \(siz-1\) 个点挂到 \(i\) 下面,要求这些点标号都大于 \(i\) ,方案数为 \(C_{n-i}^{siz-1}\)

其他点的方案数?还剩下 \(n-i-siz+1\) 个点。

我们假设那 \(siz-1\) 个点还没有挂上去, \(i\) 下面有两个空位,但是都不能放,因此方案数为 \(\prod_{k=1}^{n-i-siz+1}(i+k-2)\)

把上面的方案数乘起来,整理一下,得到

\[Ans=\sum_{i=1}^n\sum_{siz=1}^{n-i+1}i(i-1)siz(n-siz)!siz!C_{n-i}^{siz-1}
\]

复杂度 \(O(n^2)\)

#include<stdio.h>
#include<cctype>
#include<algorithm>
#define REP(i,a,b) for(int i(a);i<=(b);++i)
#define dbg(...) fprintf(stderr,__VA_ARGS__)
template<typename T,typename U>inline bool smin(T&x,const U&y){return x>y?x=y,1:0;}
template<typename T,typename U>inline bool smax(T&x,const U&y){return x<y?x=y,1:0;}
const int N=2005;
int n,p,C[N][N],fac[N];
int main(){
scanf("%d%d",&n,&p);
C[0][0]=fac[0]=1;
REP(i,1,n){
C[i][0]=1;fac[i]=1ll*fac[i-1]*i%p;
REP(j,1,n)if((C[i][j]=C[i-1][j]+C[i-1][j-1])>=p)C[i][j]-=p;
}
int ans=0;
REP(i,2,n)REP(j,1,n-i+1)ans=(ans+1ll*i*j*(i-1)%p*fac[n-j]%p*fac[j]%p*C[n-i][j-1])%p;
printf("%d\n",ans);
return 0;
}

[BZOJ5305][HAOI2018]苹果树 组合数学的更多相关文章

  1. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  2. BZOJ5305 [Haoi2018]苹果树 【组合数学】

    题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...

  3. BZOJ5305 HAOI2018苹果树(概率期望+动态规划)

    每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...

  4. [BZOJ5305][HAOI2018]苹果树(DP)

    首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...

  5. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  6. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  7. BZOJ5305: [HAOI2018]苹果树

    传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...

  8. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  9. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

随机推荐

  1. 6、DRN-----深度强化学习在新闻推荐上的应用

    1.摘要: 提出了一种新的深度强化学习框架的新闻推荐.由于新闻特征和用户喜好的动态特性,在线个性化新闻推荐是一个极具挑战性的问题. 虽然已经提出了一些在线推荐模型来解决新闻推荐的动态特性,但是这些方法 ...

  2. 《剑指Offer》——试题1:赋值运算符函数

    题目:如下类型为CMyString的声明,请为该类型添加赋值运算符函数.   class CMyString { public: CMyString(char* pData = NULL); CMyS ...

  3. /lib64和/usr/lib64和/usr/local/lib64的区别

    简单说,/lib64是内核级的,/usr/lib64是系统级的,/usr/local/lib64是用户级的. /lib/ — 包含许多被 /bin/ 和 /sbin/ 中的程序使用的库文件.目录 /u ...

  4. Android干货大放送:书籍、教程、工具各种全

    最全干货分享,本文收集整理了Android开发所需的书籍.教程.工具.资讯和周刊各种资源,它们能让你在Android开发之旅的各个阶段都受益. 入门 <Learning Android(中文版) ...

  5. C++学习第一天--编译命令

    前一个月的时间主要是在捯饬自己的ubuntu vim环境,昨天终于都搞好了,从今天开始,学习C++.至于为什么学习C++,其实很大一部分原因还是因为自己喜欢vim,又听说vim对C++的支持还不错,所 ...

  6. Lambda表达式-使用说明

    jdk8已经发布4年,其中有一个特性:Lambda,它是一个令开发者便捷开发的一种方式,Lambda Expression (Lambda表达式)是为了让java提供一种面向函数编程,原本在jdk8之 ...

  7. 详细图解mongodb下载、安装、配置与使用

    记得在管理员模式下运行CMD,否则服务将启动失败 转载:http://blog.csdn.net/boby16/article/details/51221474 详细图解,记录 win7 64 安装m ...

  8. 32.智能指针auto_ptr

    #include <iostream> #include <memory> #include <string> #include <vector> us ...

  9. PostgreSQL Replication之第二章 理解PostgreSQL的事务日志(4)

    2.4 调整检查点和XLOG 目前为止,这一章已经提供深入洞察PostgreSQL如何写入数据,一般来说,XLOG是用来干什么的.考虑到这方面的知识,我们现在可以继续并学习我们能做些什么来使我们的数据 ...

  10. vue computed自动计算

    <!DOCTYPE html> <html> <head> <title>vue</title> <meta charset=&quo ...